LibreOJ链接

Description

给出一个\(n(n\leq12)\)个点\(m(m\leq1000)\)条边的带权无向图,求该图的一棵生成树,使得其边权×该边距根的深度之和最小。

Solution

既然\(n\leq12\),可以猜测是状压DP。

定义\(f[dpt][s][s_1]\)表示一棵深度为\(dpt\),点集为\(s\),最深的(深度为\(dpt\))的点的集合为\(s_1\)的生成树的权值。我们考虑给\(s_1\)接上一些点\(s_2\),从而转移为\(f[dpt+1][s|s_2][s_2]\)。转移方程为:$$f[dpt+1][s|s_2][s_2]=min{ f[dpt][s][s_1]+w[s_1][s_2]\times dpt } \space (s_1\in s,s_2\in \complement_U^s )$$其中\(w[s_1][s_2]\)表示将\(s_2\)接在\(s_1\)上的最小花费,预处理一下即可。

时间复杂度\(O(n\cdot 2^n \cdot 2^k 2^{n-k})=O(n4^n)\)。不过似乎有\(O(n^2 3^n)\)的做法?

Code

//「NOIP2017」宝藏
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int const N=15;
int const S=1<<12;
int const INF=0x3F3F3F3F;
int n,m,ed[N][N]; int U;
int w[S][S],f[2][S][S];
void calW()
{
memset(w,0x3F,sizeof w);
for(int s1=0;s1<=U;s1++) w[s1][0]=0;
for(int s1=0;s1<=U;s1++)
for(int i=0;i<n;i++)
{
int s2=1<<i; if(s1&s2) continue;
for(int j=0;j<n;j++)
if((s1>>j)&1) w[s1][s2]=min(w[s1][s2],ed[i+1][j+1]);
}
for(int s1=0;s1<=U;s1++)
for(int s2=1;s2<=U;s2++)
{
if(s1&s2) continue;
for(int i=1;i<=s2;i<<=1)
if(s2&i) w[s1][s2]=min(w[s1][s2],w[s1][s2^i]+w[s1][i]);
}
}
int main()
{
scanf("%d%d",&n,&m); U=(1<<n)-1;
if(n==1) {puts("0"); return 0;}
memset(ed,0x3F,sizeof ed);
for(int i=1;i<=m;i++)
{
int u,v,c; scanf("%d%d%d",&u,&v,&c);
ed[u][v]=ed[v][u]=min(ed[u][v],c);
}
calW();
int c=0; int ans=INF;
memset(f,0x3F,sizeof f);
for(int i=1;i<=U;i<<=1) f[c][i][i]=0;
for(int dpt=1;dpt<=n;dpt++)
{
c^=1;
for(int s=0;s<=U;s++)
for(int s2=U^s;s2;s2=(s2-1)&(U^s))
{
int res=INF;
for(int s1=s;s1;s1=(s1-1)&s)
if(f[c^1][s][s1]<INF&&w[s1][s2]<INF) res=min(res,f[c^1][s][s1]+w[s1][s2]*dpt);
f[c][s|s2][s2]=res;
}
for(int s2=0;s2<=U;s2++) ans=min(ans,f[c][U][s2]);
}
printf("%d\n",ans);
return 0;
}

P.S.

初始的DP数组要清\(\infty\),而不是\(0\)。

DP数组需要滚动,否则会MLE

我这个做法在LOJ上需要稍微卡一下常,第52行的if就是卡常用的。

NOIP2017 - 宝藏的更多相关文章

  1. 【比赛】NOIP2017 宝藏

    这道题考试的时候就骗了部分分.其实一眼看过去,n范围12,就知道是状压,但是不知道怎么状压,想了5分钟想不出来就枪毙了状压,与AC再见了. 现在写的是状压搜索,其实算是哈希搜索,感觉状压DP理解不了啊 ...

  2. [NOIP2017]宝藏 状压DP

    [NOIP2017]宝藏 题目描述 参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 n 个深埋在地下的宝藏屋, 也给出了这 n 个宝藏屋之间可供开发的 m 条道路和它们的长度. 小明决心亲自前往挖 ...

  3. [NOIP2017]宝藏 子集DP

    题面:[NOIP2017]宝藏 题面: 首先我们观察到,如果直接DP,因为每次转移的代价受上一个状态到底选了哪些边的影响,因此无法直接转移. 所以我们考虑分层DP,即每次强制现在加入的点的距离为k(可 ...

  4. NOIP2017宝藏 [搜索/状压dp]

    NOIP2017 宝藏 题目描述 参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 n 个深埋在地下的宝藏屋, 也给出了这 n 个宝藏屋之间可供开发的 m 条道路和它们的长度. 小明决心亲自前往挖掘 ...

  5. Luogu 3959 [NOIP2017] 宝藏

    NOIP2017最后一道题 挺难想的状压dp. 受到深度的条件限制,所以一般的状态设计带有后效性,这时候考虑把深度作为一维,这样子可以保证所有状态不重复计算一遍. 神仙预处理:先处理出一个点连到一个集 ...

  6. 洛谷P3959 [NOIP2017]宝藏

    [题目描述] 参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 n 个深埋在地下的宝藏屋,也给出了这 n 个宝藏屋之间可供开发的 m 条道路和它们的长度. 小明决心亲自前往挖掘所有宝藏屋中的宝藏.但 ...

  7. NOIP2017 宝藏 题解报告【状压dp】

    题目描述 参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 n 个深埋在地下的宝藏屋, 也给出了这 n 个宝藏屋之间可供开发的 m 条道路和它们的长度. 小明决心亲自前往挖掘所有宝藏屋中的宝藏.但是 ...

  8. 【洛谷P3959】[NOIP2017] 宝藏

    宝藏 题目链接 首先,打了一个prim,得了45分 #include<iostream> #include<cstring> #include<cstdio> #i ...

  9. [NOIP2017] 宝藏 【树形DP】【状压DP】

    题目分析: 这个做法不是最优的,想找最优解请关闭这篇博客. 首先容易想到用$f[i][S][j]$表示点$i$为根,考虑$S$这些点,$i$的深度为$j$情况的答案. 转移如下: $f[i][S][j ...

随机推荐

  1. OpenCv函数学习(一)

    Intel Image Processing Library (IPL) typedef struct _IplImage { int nSize; /* IplImage大小 */ int ID; ...

  2. java日志概述和原理

    OK,现在我们来研究下Java相关的日志. 日志记录是应用程序运行中必不可少的一部分.具有良好格式和完备信息的日志记录可以在程序出现问题时帮助开发人员迅速地定位错误的根源.对于开发人员来说,在程序中使 ...

  3. 转载-Linux Shell 数组建立及使用技巧

    转载自:http://www.cnblogs.com/chengmo/archive/2010/09/30/1839632.html 如侵犯版权,请联系我删除 linux shell在编程方面比win ...

  4. RecyclerView用法

    主界面布局: <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android" xmlns ...

  5. 小谈ConcurrentHashMap

    面试的时候被面试官问了点相关知识,再次记录一些自己的总结 一. 1.HashTable也可实现线程安全,但是它是用synchronized实现的,所以其他线程访问HashTable的同步方法时,可能会 ...

  6. lodash源码分析之baseFindIndex中的运算符优先级

    我悟出权力本来就是不讲理的--蟑螂就是海米:也悟出要造反,内心必须强大到足以承受任何后果才行. --北岛<城门开> 本文为读 lodash 源码的第十篇,后续文章会更新到这个仓库中,欢迎 ...

  7. win8设置自动关机

    运行中输入 shutdown -S -T 3600 表示1个小时后关机,单位是秒

  8. 多线程编程学习笔记——编写一个异步的HTTP服务器和客户端

    接上文 多线程编程学习笔记——使用异步IO 二.   编写一个异步的HTTP服务器和客户端 本节展示了如何编写一个简单的异步HTTP服务器. 1.程序代码如下. using System; using ...

  9. Spring单元测试

    1.基于AbstractDependencyInjectionSpringContextTests Spring的单元测试可以使用AbstractDependencyInjectionSpringCo ...

  10. HDU [P1533]

    二分图带权最小匹配(朴素) 只要换几个不等号的方向就行,不需要变换权值的正负 #include <iostream> #include <cstdio> #include &l ...