本文主要介绍MapReduce编程模型的原理和基于Hadoop的MD5暴力破解思路。

一、MapReduce的基本原理

Hadoop作为一个分布式架构的实现方案,它的核心思想包括以下几个方面:HDFS文件系统,MapReduce的编程模型以及RPC框架。无论是怎样的架构,一个系统的关键无非是存储结构和业务逻辑。HDFS分布式文件系统是整个Hadoop的基础。在HDFS文件系统之中,大文件被分割成很多的数据块,每一块都有可能分布在集群的不同节点中。也就是说在HDFS文件系统中,文件的情况是这样的:

文件保存在不同的节点上,而Hadoop是用于海量数据处理的,那么如何把分布在各个节点的数据进行高效的并发处理呢?Hadoop对此提供了不同的解决方案,比如yarn框架等。框架已经帮我们写好了很多的诸如任务分配,节点通信之类的事情。而我们要做的就是写好自己的业务逻辑,那么我们就要遵守Hadoop的编程规范,而这个编程规范就是MapReduce。

那么MapReduce的运行过程是怎么样的呢?且看下图:

1.从HDFS文件系统中读取文件,每一个数据块对应一个MapTask。

2.进行Map任务,逐行读取文件,每一行调用一次Map函数,数据被封装为一个键值对也就是图中的<k2,v2>。

3.将Map后的键值对进行归约,key值相同的value会被封装到一起。就行了图中的<k,{v1,v2,v3}>

4.归约后的键值对会被送到不同的Reduce中,执行Reduce任务,输出<k3,v3>到输出文件中。

弄懂了MapReduce的执行过程之后,我们就可以编写自己的逻辑来进行处理了。

二、MD5暴力破解的基本思路

还是先上图:

1.编程生成所有的密码明文文件。

2.将明文上传至HDFS文件系统中,在Map函数中实现MD5的求值。然后直接存入文件系统中中。

代码实现:

package com.test;

import java.security.MessageDigest;

import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
/**
* 目地很简单。不需要reduce处理,直接在Map中解决问题
* @author hadoop
*
*/
public class Test {
//定义Map处理类
static class TestMapper extends Mapper<LongWritable, Text, Text, Text>{
//重写map方法
public void map(LongWritable key, Text value, Context context)throws InterruptedException {
try{
//生成MD5
String keyStr=value.toString();
String MD5=getMD5(keyStr);
context.write(new Text(keyStr), new Text(MD5));
}catch (Exception e){
e.printStackTrace();
}
}
}
/**
* MD5计算
* @param str
* @return
*/
public static String getMD5(String str) {
try {
// 生成一个MD5加密计算摘要
MessageDigest md = MessageDigest.getInstance("MD5");
// 计算md5函数
md.update(str.getBytes());
// digest()最后确定返回md5 hash值,返回值为8为字符串。因为md5 hash值是16位的hex值,实际上就是8位的字符
// BigInteger函数则将8位的字符串转换成16位hex值,用字符串来表示;得到字符串形式的hash值
byte[] encrypt = md.digest();
StringBuilder sb = new StringBuilder();
for (byte t : encrypt) {
String s = Integer.toHexString(t & 0xFF);
if (s.length() == 1) {
s = "0" + s;
}
sb.append(s);
}
String res = sb.toString();
return res;
} catch (Exception e) {
e.printStackTrace();
}
return null;
} public static void main(String[] args) throws Exception {
//必须要传递的是自定的mapper和reducer的类,输入输出的路径必须指定,输出的类型<k3,v3>必须指定
//将自定义的MyMapper和MyReducer组装在一起
Configuration conf=new Configuration();
String jobName=Test.class.getSimpleName();
//首先写job,知道需要conf和jobname在去创建即可
Job job = Job.getInstance(conf, jobName);
//如果要打包运行改程序,则需要调用如下行
job.setJarByClass(Test.class);
//读取HDFS內容:设置输入路径
FileInputFormat.setInputPaths(job, new Path(args[0]));
//指定解析<k1,v1>的类(谁来解析键值对)
//*指定解析的类可以省略不写,因为设置解析类默认的就是TextInputFormat.class
job.setInputFormatClass(TextInputFormat.class);
//指定自定义mapper类
job.setMapperClass(TestMapper.class);
//指定map输出的key2的类型和value2的类型 <k2,v2>
//下面两步可以省略,当<k3,v3>和<k2,v2>类型一致的时候,<k2,v2>类型可以不指定
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
//分区(默认1个),排序,分组,规约 采用 默认
// job.setCombinerClass(null);
//接下来采用reduce步骤
//指定自定义的reduce类
// job.setReducerClass(null);
//指定输出的<k3,v3>类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
//指定输出<K3,V3>的类
//下面这一步可以省
// job.setOutputFormatClass(TextOutputFormat.class);
//指定输出路径
FileOutputFormat.setOutputPath(job, new Path(args[1]));
//写的mapreduce程序要交给resource manager运行
job.waitForCompletion(true);
} }

  

这里为什么不用Reduce过程?

Reduce是对归约后的键值对进行处理的,但是可以看见,我们的明文都是唯一的,经过Map后输出的键值对的Key都是不一样的,归约之后仍然如此,所以没有必要在Reduce过程中进行其他操作。

另外我之前的想法是不在map中处理,而是将Map中读取到的文件内容直接输出到Reduce,然后在Reduce中进行MD5的计算,但是从Map中传输过来的数据总会多出一些行,导致计算出错。(这个我也没能弄懂怎么回事,有大佬知道的可以靠诉我)

三、数据查询

有了上一步生成的数据,我们就可以做数据的查询了。生成的文件仍然是在HDFS文件系统中,通过终端输入参数(可以是明文或者是密文),然后用MapReduce进行查找,结果输出到文件中。

代码:

package com.test;

import java.security.MessageDigest;

import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
/**
* 目地很简单。不需要reduce处理,直接在Map中解决问题
* @author hadoop
*
*/
public class Test {
private static String s=null;
//定义Map处理类
static class TestMapper extends Mapper<LongWritable, Text, Text, Text>{
//重写map方法
public void map(LongWritable key, Text value, Context context)throws InterruptedException {
try{
//查询MD5的值
int index=value.find(s);
if(index>=0){
System.out.println("=================="+value.toString());
context.write(new Text("result"), value);
}
}catch (Exception e){
e.printStackTrace();
}
}
}
/**
* MD5计算
* @param str
* @return
*/
public static String getMD5(String str) {
try {
// 生成一个MD5加密计算摘要
MessageDigest md = MessageDigest.getInstance("MD5");
// 计算md5函数
md.update(str.getBytes());
// digest()最后确定返回md5 hash值,返回值为8为字符串。因为md5 hash值是16位的hex值,实际上就是8位的字符
// BigInteger函数则将8位的字符串转换成16位hex值,用字符串来表示;得到字符串形式的hash值
byte[] encrypt = md.digest();
StringBuilder sb = new StringBuilder();
for (byte t : encrypt) {
String s = Integer.toHexString(t & 0xFF);
if (s.length() == 1) {
s = "0" + s;
}
sb.append(s);
}
String res = sb.toString();
return res;
} catch (Exception e) {
e.printStackTrace();
}
return null;
} public static void main(String[] args) throws Exception {
//必须要传递的是自定的mapper和reducer的类,输入输出的路径必须指定,输出的类型<k3,v3>必须指定
//将自定义的MyMapper和MyReducer组装在一起 //参数(明文或者MD5值)
s=args[2];
Configuration conf=new Configuration();
String jobName=Test.class.getSimpleName();
//首先写job,知道需要conf和jobname在去创建即可
Job job = Job.getInstance(conf, jobName);
//如果要打包运行改程序,则需要调用如下行
job.setJarByClass(Test.class);
//读取HDFS內容:设置输入路径
FileInputFormat.setInputPaths(job, new Path(args[0]));
//指定解析<k1,v1>的类(谁来解析键值对)
//*指定解析的类可以省略不写,因为设置解析类默认的就是TextInputFormat.class
job.setInputFormatClass(TextInputFormat.class);
//指定自定义mapper类
job.setMapperClass(TestMapper.class);
//指定map输出的key2的类型和value2的类型 <k2,v2>
//下面两步可以省略,当<k3,v3>和<k2,v2>类型一致的时候,<k2,v2>类型可以不指定
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
//分区(默认1个),排序,分组,规约 采用 默认
// job.setCombinerClass(null);
//接下来采用reduce步骤
//指定自定义的reduce类
// job.setReducerClass(null);
//指定输出的<k3,v3>类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
//指定输出<K3,V3>的类
//下面这一步可以省
// job.setOutputFormatClass(TextOutputFormat.class);
//指定输出路径
FileOutputFormat.setOutputPath(job, new Path(args[1]));
//写的mapreduce程序要交给resource manager运行
job.waitForCompletion(true);
} }

  

四、导出JAR包放到Hadoop中运行

把文件导出成JAR包,在终端使用命令

生成密文:

bin/hadoop jar [jar包路径] [输入文件路径] [输出路径]

查询

bin/hadoop jar [jar包路径] [输入文件路径] [输出路径] [密文或者明文]

生成的密文结果实例:

查询的结果示例:

ok以上,祝君好运。

暴力破解MD5的实现(MapReduce编程)的更多相关文章

  1. Python黑客编程2 入门demo--zip暴力破解

    Python黑客编程2 入门demo--zip暴力破解 上一篇文章,我们在Kali Linux中搭建了基本的Python开发环境,本篇文章为了拉近Python和大家的距离,我们写一个暴力破解zip包密 ...

  2. burp暴力破解之md5和绕过验证码

    Burpsuite是一个功能强大的工具,也是一个比较复杂的工具 本节主要说明一下burp的intruder模块中的2个技巧 1.md5加密 我们在payload Processing中的add选项可以 ...

  3. Linux 利用hosts.deny 防止暴力破解ssh(转)

    一.ssh暴力破解 利用专业的破解程序,配合密码字典.登陆用户名,尝试登陆服务器,来进行破解密码,此方法,虽慢,但却很有效果. 二.暴力破解演示 2.1.基础环境:2台linux主机(centos 7 ...

  4. Web攻防之暴力破解(何足道版)

    原创文章 原文首发我实验室公众号 猎户安全实验室 然后发在先知平台备份了一份 1 @序 攻防之初,大多为绕过既有逻辑和认证,以Getshell为节点,不管是SQL注入获得管理员数据还是XSS 获得后台 ...

  5. 385cc412a70eb9c6578a82ac58fce14c 教大家破解md5验证值

    Md5密文破解(解密)可以说是网络攻击中的一个必不可少的环节,是工具中的一个重要"辅助工具".md5解密主要用于网络攻击,在对网站等进行入侵过程,有可能获得管理员或者其他用户的账号 ...

  6. 《11招玩转网络安全》之第三招:Web暴力破解-Low级别

    Docker中启动LocalDVWA容器,准备DVWA环境.在浏览器地址栏输入http://127.0.0.1,中打开DVWA靶机.自动跳转到了http://127.0.0.1/login.php登录 ...

  7. DVWA 黑客攻防演练(二)暴力破解 Brute Froce

    暴力破解,简称"爆破".不要以为没人会对一些小站爆破.实现上我以前用 wordpress 搭建一个博客开始就有人对我的站点进行爆破.这是装了 WordfenceWAF 插件后的统计 ...

  8. 如何通过Python暴力破解网站登陆密码

    首先申明,该文章只可以用于交流学习,不可以用于其他用途,否则后果自负. 现在国家对网络安全的管理,越来越严,但是还是有一些不法网站逍遥法外,受限于国内的人力.物力,无法对这些网站进行取缔. 今天演示的 ...

  9. 【Linux笔记】阿里云服务器被暴力破解

    一.关于暴力破解 前几天新购进了一台阿里云服务器,使用过程中时常会收到“主机被暴力破解”的警告,警告信息如下: 云盾用户您好!您的主机:... 正在被暴力破解,系统已自动启动破解保护.详情请登录htt ...

随机推荐

  1. java to kotlin (2) - lambda编程

    前言 Kotlin Note 是我学习kotlin整理笔记向博客,文章中的例子参考了kotlin in action这本书籍,同时我也极力推荐这本书,拥有Java基础的人可以很快的就使用kotlin来 ...

  2. 无法远程连接SQLSERVER2000的解决方法

    有时候客户端和服务器不在同一个局域网里面,这时候很可能无法直接使用服务器名称来标识该服务器,这时候我们可以使用HOSTS文件来进行名字解析,具体的方法是: 1.使用记事本打开HOSTS文件(一般情况下 ...

  3. Android开发——打造简单的Viewpager指示器

    准备工作: 1.两张不同颜色的小圆点图片,可以去阿里巴巴矢量图网站搜索 我把我使用的图片贴出来 2.一个简单的Viewpager的实现 下面是简单的Viewpager实现步骤: 1.布局文件使用Vie ...

  4. Tomcat(五):nginx/httpd + tomcat及负载均衡tomcat

    */ .hljs { display: block; overflow-x: auto; padding: 0.5em; color: #333; background: #f8f8f8; } .hl ...

  5. Sorting Slides(二分图匹配——确定唯一匹配边)

    题目描述: Professor Clumsey is going to give an important talk this afternoon. Unfortunately, he is not ...

  6. Audio Unit 基础

    如图所示,所有 iOS 音频技术都是基于 audio units.此处显示的更高级别的技术,如 Media Player,AV Foundation,OpenAL,AudioToolbox,是对 au ...

  7. 解决axios传递参数后台无法接收问题

    1.根据下面几个方法改变前台传递参数方式 这样后台就可以直接根据传递的参数获取数据,如下图用户登录时直接传递用户名和密码 2.不改变前台传递样式修改后台接收方式

  8. Hadoop RPC简单例子

    jdk中已经提供了一个RPC框架-RMI,但是该PRC框架过于重量级并且可控之处比较少,所以Hadoop RPC实现了自定义的PRC框架. 同其他RPC框架一样,Hadoop RPC分为四个部分: ( ...

  9. [dsu on tree]【学习笔记】

    十几天前看到zyf2000发过关于这个的题目的Blog, 今天终于去学习了一下 Codeforces原文链接 dsu on tree 简介 我也不清楚dsu是什么的英文缩写... 就像是树上的启发式合 ...

  10. idea编译时JDK版本变化

    修改参考:http://www.cnblogs.com/woshimrf/p/5863248.html 添加maven-compiler-plugin插件.