题面

题目描述

Farmer John has noticed that his cows often move between nearby fields. Taking this into account, he wants to plant enough grass in each of his fields not only for the cows situated initially in that field, but also for cows visiting from nearby fields.

Specifically, FJ's farm consists of N fields (1 <= N <= 100,000), where some pairs of fields are connected with bi-directional trails (N-1 of them in total). FJ has designed the farm so that between any two fields i and j, there is a unique path made up of trails connecting between i and j. Field i is home to C(i) cows, although cows sometimes move to a different field by crossing up to K trails (1 <= K <= 20).

FJ wants to plant enough grass in each field i to feed the maximum number of cows, M(i), that could possibly end up in that field -- that is, the number of cows that can potentially reach field i by following at most K trails. Given the structure of FJ's farm and the value of C(i) for each field i, please help FJ compute M(i) for every field i.

给出一棵n个点的树,每个点上有C_i头牛,问每个点k步范围内各有多少头牛。

输入格式:

Line 1: Two space-separated integers, N and K.

Lines 2..N: Each line contains two space-separated integers, i and j (1 <= i,j <= N) indicating that fields i and j are directly connected by a trail.

Lines N+1..2N: Line N+i contains the integer C(i). (0 <= C(i) <= 1000)

输出格式:

Lines 1..N: Line i should contain the value of M(i).

输入样例#1:

6 2

5 1

3 6

2 4

2 1

3 2

1

2

3

4

5

6

输出样例#1:

15

21

16

10

8

11

说明

There are 6 fields, with trails connecting (5,1), (3,6), (2,4), (2,1), and (3,2). Field i has C(i) = i cows.

Field 1 has M(1) = 15 cows within a distance of 2 trails, etc.

题解

设f[i][j]表示从i开始,j步以内的牛的数量

很容易想到f[i][j]=sum(f[k][j-1])再去减去一堆什么东西

(k表示和i相连的节点)

我这个蒟蒻尽然用容斥原理做。。。。

要不是题目中的K很小,我觉得会TLE。。。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define MAX 100100
inline int read()
{
register int x=0,t=1;
register char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-'){t=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-48;ch=getchar();}
return x*t;
}
struct Line
{
int u,v;
}e[MAX];
long long N,K,f[MAX][30],Ans[MAX];
int main()
{
N=read();K=read();
register int u,v;
for(int i=1;i<N;++i)
e[i]=(Line){read(),read()};
for(int i=1;i<=N;++i)
f[i][0]=read();
//f[i][j]表示从i节点开始走j步的奶牛数
for(int i=1;i<N;++i)
{
f[e[i].u][1]+=f[e[i].v][0];
f[e[i].v][1]+=f[e[i].u][0];
}
for(int i=2;i<=K;++i)
{
for(int j=1;j<N;++j)//枚举边
{
for(int k=i-1,t=1;k>=0;t=!t,k--)//容斥大法
{
if(t)
{
f[e[j].u][i]+=f[e[j].v][k];
f[e[j].v][i]+=f[e[j].u][k];
}
else
{
f[e[j].u][i]-=f[e[j].u][k];
f[e[j].v][i]-=f[e[j].v][k];
}
}
}
}
for(int i=1;i<=N;++i)
for(int j=0;j<=K;++j)
Ans[i]+=f[i][j];
for(int i=1;i<=N;++i)
printf("%d\n",Ans[i]);
return 0;
}

【洛谷3047】[USACO12FEB]附近的牛Nearby Cows的更多相关文章

  1. 洛谷 P3047 [USACO12FEB]附近的牛Nearby Cows

    P3047 [USACO12FEB]附近的牛Nearby Cows 题目描述 Farmer John has noticed that his cows often move between near ...

  2. luogu 3047 [USACO12FEB]附近的牛Nearby Cows 树形dp

    $k$ 十分小,直接暴力维护 $1$~$k$ 的答案即可. 然后需要用父亲转移到儿子的方式转移一下. Code: #include <bits/stdc++.h> #define M 23 ...

  3. 树形DP【洛谷P3047】 [USACO12FEB]附近的牛Nearby Cows

    P3047 [USACO12FEB]附近的牛Nearby Cows 农民约翰已经注意到他的奶牛经常在附近的田野之间移动.考虑到这一点,他想在每一块土地上种上足够的草,不仅是为了最初在这片土地上的奶牛, ...

  4. [USACO12FEB]附近的牛Nearby Cows

    题目描述 Farmer John has noticed that his cows often move between nearby fields. Taking this into accoun ...

  5. 【题解】Luogu p3047 [USACO12FEB]附近的牛Nearby Cows 树型dp

    题目描述 Farmer John has noticed that his cows often move between nearby fields. Taking this into accoun ...

  6. LUOGU P3047 [USACO12FEB]附近的牛Nearby Cows

    传送门 解题思路 树形dp,看到数据范围应该能想到是O(nk)级别的算法,进而就可以设出dp状态,dp[x][j]表示以x为根的子树,距离它为i的点的总和,第一遍dp首先自底向上,dp出每个节点的子树 ...

  7. P3047 [USACO12FEB]附近的牛Nearby Cows

    https://www.luogu.org/problemnew/show/P304 1 #include <bits/stdc++.h> 2 #define up(i,l,r) for( ...

  8. 【[USACO12FEB]附近的牛Nearby Cows】

    我记得我调这道题时中耳炎,发烧,于是在学长的指导下过了也没有发题解 发现我自己的思路蛮鬼畜的 常规操作:\(f[i][j]\) 表示到\(i\)的距离为\(j\)的奶牛有多少只,但注意这只是在第二遍d ...

  9. [luoguP3047] [USACO12FEB]附近的牛Nearby Cows(DP)

    传送门 dp[i][j][0] 表示点 i 在以 i 为根的子树中范围为 j 的解 dp[i][j][1] 表示点 i 在除去 以 i 为根的子树中范围为 j 的解 状态转移就很好写了 ——代码 #i ...

随机推荐

  1. [Swift]UIKit学习之警告框:UIAlertController和UIAlertView

    Important: UIAlertView is deprecated in iOS 8. (Note that UIAlertViewDelegate is also deprecated.) T ...

  2. mysql 查找某个表在哪个库

    SELECT table_schema FROM information_schema.TABLES WHERE table_name = '表名';

  3. Jenkins代码管理

    1.1  Jenkins安装与下载应用代码   应用部署   http://jenkins-ci.org   http://wordpress.org/   http://core.svn.wordp ...

  4. php实现的短网址算法分享

    这篇文章主要介绍了php实现的短网址算法,理论上支持1,073,741,824个短网址,个人使用足够了,需要的朋友可以参考下 每个网址用6个字符代替,(6^32) 最多可以拥有1,073,741,82 ...

  5. MVC5中使用Log4Net

    最早搜到的是这篇: http://www.codeproject.com/Articles/823247/How-to-use-Apache-log-net-library-with-ASP-NET- ...

  6. linux 管理权限

    linux 管理权限 linux 文件 权限 1.使用 ls -l 命令 执行结果如下(/var/log) : drwxr-x--- 2 root adm 4096 2013-08-07 11:03 ...

  7. Python 判断闰年,判断日期是当前年的第几天

    http://www.cnblogs.com/vamei/archive/2012/07/19/2600135.html Python小题目 针对快速教程 作业答案 写一个程序,判断2008年是否是闰 ...

  8. 终极解决方案:java.security.cert.CertificateException: Certificates does not conform to algorithm constraints

    报错信息 javax.net.ssl.SSLHandshakeException: java.security.cert.CertificateException: Certificates does ...

  9. Android Stdio 中的Rendering Problems Android N requires the IDE to be running with Java 1.8 or later Install a supported JDK解决办法

    出现如下图所示的错误 解决办法为: 然后在里面输入SDK 下载 下载APILevel为23版本的SDK 换成23版本的SDK 完美解决问题

  10. MySQL的常见存储引擎介绍与参数设置调优

    MySQL常用存储引擎之MyISAM 特性: 1.并发性与锁级别 2.表损坏修复 check table tablename repair table tablename 3.MyISAM表支持的索引 ...