【洛谷3047】[USACO12FEB]附近的牛Nearby Cows
题面
题目描述
Farmer John has noticed that his cows often move between nearby fields. Taking this into account, he wants to plant enough grass in each of his fields not only for the cows situated initially in that field, but also for cows visiting from nearby fields.
Specifically, FJ's farm consists of N fields (1 <= N <= 100,000), where some pairs of fields are connected with bi-directional trails (N-1 of them in total). FJ has designed the farm so that between any two fields i and j, there is a unique path made up of trails connecting between i and j. Field i is home to C(i) cows, although cows sometimes move to a different field by crossing up to K trails (1 <= K <= 20).
FJ wants to plant enough grass in each field i to feed the maximum number of cows, M(i), that could possibly end up in that field -- that is, the number of cows that can potentially reach field i by following at most K trails. Given the structure of FJ's farm and the value of C(i) for each field i, please help FJ compute M(i) for every field i.
给出一棵n个点的树,每个点上有C_i头牛,问每个点k步范围内各有多少头牛。
输入格式:
Line 1: Two space-separated integers, N and K.
Lines 2..N: Each line contains two space-separated integers, i and j (1 <= i,j <= N) indicating that fields i and j are directly connected by a trail.
Lines N+1..2N: Line N+i contains the integer C(i). (0 <= C(i) <= 1000)
输出格式:
Lines 1..N: Line i should contain the value of M(i).
输入样例#1:
6 2
5 1
3 6
2 4
2 1
3 2
1
2
3
4
5
6
输出样例#1:
15
21
16
10
8
11
说明
There are 6 fields, with trails connecting (5,1), (3,6), (2,4), (2,1), and (3,2). Field i has C(i) = i cows.
Field 1 has M(1) = 15 cows within a distance of 2 trails, etc.
题解
设f[i][j]表示从i开始,j步以内的牛的数量
很容易想到f[i][j]=sum(f[k][j-1])再去减去一堆什么东西
(k表示和i相连的节点)
我这个蒟蒻尽然用容斥原理做。。。。
要不是题目中的K很小,我觉得会TLE。。。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define MAX 100100
inline int read()
{
register int x=0,t=1;
register char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-'){t=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-48;ch=getchar();}
return x*t;
}
struct Line
{
int u,v;
}e[MAX];
long long N,K,f[MAX][30],Ans[MAX];
int main()
{
N=read();K=read();
register int u,v;
for(int i=1;i<N;++i)
e[i]=(Line){read(),read()};
for(int i=1;i<=N;++i)
f[i][0]=read();
//f[i][j]表示从i节点开始走j步的奶牛数
for(int i=1;i<N;++i)
{
f[e[i].u][1]+=f[e[i].v][0];
f[e[i].v][1]+=f[e[i].u][0];
}
for(int i=2;i<=K;++i)
{
for(int j=1;j<N;++j)//枚举边
{
for(int k=i-1,t=1;k>=0;t=!t,k--)//容斥大法
{
if(t)
{
f[e[j].u][i]+=f[e[j].v][k];
f[e[j].v][i]+=f[e[j].u][k];
}
else
{
f[e[j].u][i]-=f[e[j].u][k];
f[e[j].v][i]-=f[e[j].v][k];
}
}
}
}
for(int i=1;i<=N;++i)
for(int j=0;j<=K;++j)
Ans[i]+=f[i][j];
for(int i=1;i<=N;++i)
printf("%d\n",Ans[i]);
return 0;
}
【洛谷3047】[USACO12FEB]附近的牛Nearby Cows的更多相关文章
- 洛谷 P3047 [USACO12FEB]附近的牛Nearby Cows
P3047 [USACO12FEB]附近的牛Nearby Cows 题目描述 Farmer John has noticed that his cows often move between near ...
- luogu 3047 [USACO12FEB]附近的牛Nearby Cows 树形dp
$k$ 十分小,直接暴力维护 $1$~$k$ 的答案即可. 然后需要用父亲转移到儿子的方式转移一下. Code: #include <bits/stdc++.h> #define M 23 ...
- 树形DP【洛谷P3047】 [USACO12FEB]附近的牛Nearby Cows
P3047 [USACO12FEB]附近的牛Nearby Cows 农民约翰已经注意到他的奶牛经常在附近的田野之间移动.考虑到这一点,他想在每一块土地上种上足够的草,不仅是为了最初在这片土地上的奶牛, ...
- [USACO12FEB]附近的牛Nearby Cows
题目描述 Farmer John has noticed that his cows often move between nearby fields. Taking this into accoun ...
- 【题解】Luogu p3047 [USACO12FEB]附近的牛Nearby Cows 树型dp
题目描述 Farmer John has noticed that his cows often move between nearby fields. Taking this into accoun ...
- LUOGU P3047 [USACO12FEB]附近的牛Nearby Cows
传送门 解题思路 树形dp,看到数据范围应该能想到是O(nk)级别的算法,进而就可以设出dp状态,dp[x][j]表示以x为根的子树,距离它为i的点的总和,第一遍dp首先自底向上,dp出每个节点的子树 ...
- P3047 [USACO12FEB]附近的牛Nearby Cows
https://www.luogu.org/problemnew/show/P304 1 #include <bits/stdc++.h> 2 #define up(i,l,r) for( ...
- 【[USACO12FEB]附近的牛Nearby Cows】
我记得我调这道题时中耳炎,发烧,于是在学长的指导下过了也没有发题解 发现我自己的思路蛮鬼畜的 常规操作:\(f[i][j]\) 表示到\(i\)的距离为\(j\)的奶牛有多少只,但注意这只是在第二遍d ...
- [luoguP3047] [USACO12FEB]附近的牛Nearby Cows(DP)
传送门 dp[i][j][0] 表示点 i 在以 i 为根的子树中范围为 j 的解 dp[i][j][1] 表示点 i 在除去 以 i 为根的子树中范围为 j 的解 状态转移就很好写了 ——代码 #i ...
随机推荐
- 应用负载均衡之LVS(三):使用ipvsadm以及详细分析VS/DR模式
*/ .hljs { display: block; overflow-x: auto; padding: 0.5em; color: #333; background: #f8f8f8; } .hl ...
- Java经典编程题50道之十九
打印出如下图案(菱形) * *** ****** ******** ****** *** * public class Example19 ...
- thinkPHP替换SQL变量
使用tp里M()->where(pb_id=%d and course=%d and DATE_FORMAT(pub_time, \"%H:%i:%s\") < &qu ...
- rxjs-流式编程
前言 第一次接触rxjs也是因为angular2应用,内置了rxjs的依赖,了解之后发现它的强大,是一个可以代替promise的框架,但是只处理promise的东西有点拿尚方宝剑砍蚊子的意思. 如果我 ...
- 了解一下Http常见状态码、Http协议的工作特点和原理、Http请求Post与Get的区别
HTTP协议常见状态码状态码的作用负责标记客户端请求服务器的返回结果,标记服务器端的处理是否正常,通知出现的错误等等职责,借助客户端可以知道客户端是否正常请求服务端.五大类:1XX(信息类状态码,接收 ...
- Python后端(一)——客户端/服务端
网址组成(四部分) 协议 http, https(https 是加密的http) 主机 g.cn zhihu.com之类的网址 ,因此一般不用填写 路径 下面的「/」和「 ...
- 原创:实现ehcache动态创建cache,以及超期判断的具体逻辑
当前最常用的三个缓存组件:ehcache.redis.memcached 其中,ehcache与应用共同运行于JVM中,属于嵌入式组件,运行效率最高,因此常被用于实现一级缓存. 在更复杂的一些系统中, ...
- spring cloud熔断监控Hystrix Dashboard和Turbine
参考: http://blog.csdn.net/ityouknow/article/details/72625646 完整pom <?xml version="1.0" e ...
- Centos7下,简单DOCKER 使用.映射SSH端口到宿主主机.
其实使用docker完全没有必要ssh,初学的时候,可以这样熟悉以下操作. 参考这哥们的文章:http://www.jianshu.com/p/d2dd936863ec 获取镜像 docker pul ...
- nginx新的站点的配置
每一次配置新的站点的时候,要记得重新启动nginx: sudo -s; nginx -s reload; 配置文件,有涉及到 每一个站点都有一个.conf文件. 域名重定向:Gas Mask的软件的使 ...