),第二位代表有几个10(即几个101),第三位代表有几个100(即有几个102)…,用小学课本上的说法就是:个位上的数表示几个1,十位上的数表示向个10,百位上的数表示几个100……

同理可证,二进制数则是:第1位数表示几个1 (20),第2位数表示几个2(21),第3位数表示几个4(22),第4位数表示向个8(23)……

以前我们知道1个字节有8位,现在通过计算,我们又得知:1个字节可以表达的最大的数是255,也就是说表示0~255这256个数。

那么两个字节(双字节数)呢?双字节共16位。 1111111111111111,这个数并不大,但长得有点眼晕,从现在起,我们要学会这样来表达二制数:

1111 1111 1111 1111,即每4位隔一空格。

双字节数最大值为:

1 * 215 + 1 *214 + 1* 213 + 1 * 212 + 1 * 211 + 1 * 210 + …… + 1 * 22 + 1 * 21 + 1* 20 = 65535

    很自然,我们可以想到,一种数据类型允许的最大值,和它的位数有关。具体的计算方法方法是,如果它有n位,那么最大值就是:

n位二进制数的最大值:1 * 2(n-1) + 1 * 2(n-2) + ... + 1 * 20

2、理解有符号数和无符号数

负数在计算机中如何表示呢?这一点,你可能听过两种不同的回答。

一 种是教科书,它会告诉你:计算机用“补码”表示负数。可是有关“补码”的概念一说就得一节课,这一些我们需要在第6章中用一章的篇幅讲2进制的一切。再 者,用“补码”表示负数,其实是一种公式,公式的作用在于告诉你,想得到问题的答案,应该如何计算。却并没有告诉你为什么用这个公式就可以得到答案?111 1111

双字节数: 111 1111 1111 1111

四字节数: 111 1111 1111 1111 1111 1111 1111 1111

当我们指定一个数量是 + 1* 26 + 1* 25 + 1* 24 + 1* 23 + 1* 22 + 1* 21 + 1* 20

有符号数: 0111 1111   值:127         1* 26 + 1* 25 + 1* 24 + 1* 23 + 1* 22 + 1* 21 + 1* 20

  同样是一个字节,无符号数的最大值是255,而有符号数的最大值是127。原因是有符号数中的最高位被挪去表示符号了。并且,我们知道,最高位的权值也是最高的(对于1字节数来说是2的7次方=128),所以仅仅少于一位,最大值一下子减半。

不过,有符号数的长处是它可以表示负数。因此,虽然它的在最大值缩水了,却在负值的方向出现了伸展。我们仍一个字节的数值对比:

无符号数:                       0 ----------------- 255

有符号数:        -128 --------- 0 ---------- 127

 

同样是一个字节,无符号的最小值是 0 ,而有符号数的最小值是-128。所以二者能表达的不同的数值的个数都一样是256个。只不过前者表达的是0到255这256个数,后者表达的是-128到+127这256个数。

一个有符号的数据类型的最小值是如何计算出来的呢?

有符号的数据类型的最大值的计算方法完全和无符号一样,只不过它少了一个最高位(见第3点)。但在负值范围内,数值的计算方法不能直接使用1* 26 + 1* 25 的公式进行转换。在计算机中,负数除为最高位为1以外,还采用补码形式进行表达。所以在计算其值前,需要对补码进行还原。这里,先直观地看一眼补码的形式:

以我们原有的数学经验,在10进制中:1 表示正1,而加上负号:-1 表示和1相对的负值。

000 0000000 0001000 0010000 0011 111 1110 -1 负数:原码就是原来的表示方法、反码是除符号位(最高位)外取反、补码=反码+1双字节数 111 1111 1111 1111 1111 1111 1111 1111 -1

可 能有同学这时会混了:为什么 1111 1111 有时表示255,有时又表示-1?所以我再强调一下本节前面所说的第2点:你自已决定一个数是有符号还是无符号的。写程序时,指定一个量是有符号的,那么 当这个量的二进制各位上都是1时,它表示的数就是-1;相反,如果事选声明这个量是无符号的,此时它表示的就是该量允许的最大值,对于一个字节的数来说, 最大值就是255。

ok 摘抄暂告段落,其实原文对于c的一些基础数据类型知识介绍的非常详细,8过太长了,摘到我需要的内容后就没全帖过来,如果有需要学习的同学,建议参见原文:)

转自http://blog.cersp.com/7892477/1201309.aspx

关键字: 二进制编码,负数二进制,二进制

2007-09-09 14:24:25
标签:教育杂谈

在计算机内部,所有信息都是用二进制数串的形式表示的。整数通常都有正负之分,计算机中的整数分为无符号的和带符号的。无符号的整数用来表示0和正整数, 带符号的证书可以表示所有的整数。由于计算机中符号和数字一样,都必须用二进制数串来表示,因此,正负号也必须用0、1来表示。通常我们用最高的有效位来 表示数的符号(当用8位来表示一个整数时,第8位即为最高有效位,当用16位来表示一个整数时,第16位即为最高有效位。)0表示正号、1表示负号,这种 正负号数字化的机内表示形式就称为“机器数”,而相应的机器外部用正负号表示的数称为“真值”。将一个真值表示成二进制字串的机器数的过程就称为编码。

无符号数没有原码、反码和补码一说。只有带符号数才存在不同的编码方式。

带符号整数有原码、反码、补码等几种编码方式。原码即直接将真值转换为其相应的二进制形式,而反码和补码是对原码进行某种转换编码方式。正整数的原 码、反码和补码都一样,负数的反码是对原码的除符号位外的其他位进行取反后的结果(取反即如果该位为0则变为1,而该位为1则变为0的操作)。而补码是先 求原码的反码,然后在反码的末尾位加1 后得到的结果,即补码是反码+1。IBM-PC中带符号整数都采用补码形式表示。(注意,只是带符号的整数采用补码存储表示的,浮点数另有其存储方式。)

采用补码的原因或好处如下。

采用补码运算具有如下两个特征:

1)因为使用补码可以将符号位和其他位统一处理,同时,减法也可以按加法来处理,即如果是补码表示的数,不管是加减法都直接用加法运算即可实现。

2)两个用补码表示的数相加时,如果最高位(符号位)有进位,则进位被舍弃。

这样的运算有两个好处:

1)使符号位能与有效值部分一起参加运算,从而简化运算规则。从而可以简化运算器的结构,提高运算速度;(减法运算可以用加法运算表示出来。)

2)加法运算比减法运算更易于实现。使减法运算转换为加法运算,进一步简化计算机中运算器的线路设计。

下面深入分析上面所陈述的采用补码的原因(目的)。

用带符号位的原码进行乘除运算时结果正确,而在加减运算的时候就出现了问题,如下:假设字长为8bits

( 1 ) 10- ( 1 )10 = ( 1 )10 + ( -1 )10 = ( 0 )10

(00000001)原 + (10000001)原 = (10000010)原 = ( -2 ) 显然不正确.。

因为在两个整数的加法运算中是没有问题的,于是就发现问题出现在带符号位的负数身上,对除符号位外的其余各位逐位取反就产生了反码。反码的取值空间和原码相同且一一对应。下面是反码的减法运算:

( 1 )10 - ( 1 ) 10= ( 1 ) 10+ ( -1 ) 10= ( 0 )10

(00000001) 反+ (11111110)反 = (11111111)反 = ( -0 ) 有问题。

( 1 )10 - ( 2)10 = ( 1 )10 + ( -2 )10 = ( -1 )10

(00000001) 反+ (11111101)反 = (11111110)反 = ( -1 ) 正确

问题出现在(+0)和(-0)上,在人们的计算概念中零是没有正负之分的。

于是就引入了补码概念。负数的补码就是对反码加一,而正数不变,正数的原码反码补码是一样的。在补码中用(-128)代替了(-0),所以补码的表示范围为:

(-128~0~127)共256个。

注意:(-128)没有相对应的原码和反码, (-128) = (10000000) 补码的加减运算如下:

( 1 ) 10- ( 1 ) 10= ( 1 )10 + ( -1 )10 = ( 0 )10

(00000001)补 + (11111111)补 = (00000000)补 = ( 0 ) 正确

( 1 ) 10- ( 2) 10= ( 1 )10 + ( -2 )10 = ( -1 )10

(00000001) 补+ (11111110) 补= (11111111)补 = ( -1 ) 正确

采用补码表示还有另外一个原因,那就是为了防止0的机器数有两个编码。原码和反码表示的0有两种形式+0和-0,而我们知道,+0和-0是相同的。这 样,8位的原码和反码表示的整数的范围就是-127~+127(11111111~01111111),而采用补码表示的时候,00000000是+0, 即0;10000000不再是-0,而是-128,这样,补码表示的数的范围就是-128~+127了,不但增加了一个数得表示范围,而且还保证了0编码 的唯一性。

整数和0的原码、反码和补码都相同,下面介绍手工快速求负数补码的方法。这个方法在教材的第8页已经提到了,这里再写出来以便能引起大家的注意。其方法如下:

先写出该负数的相反数(正数),再将该正数的二进制形式写出来,然后对这个二进制位串按位取反,即若是1则改为0,若是0则改为1,最后在末位加1。

接下来的问题是,如何能将减法运算转换成加法运算呢?

我们已经知道,原码表示简单直观,与真值转换容易。但如果用原码表示,其符号位不能参加运算。在计算机中用原码实现算术运算时,要取绝对值参加运算,符号 位单独处理,这对乘除运算是很容易实现的,但对加减运算是非常不方便的,如两个异号数相加,实际是要做减法,而两个异号数相减,实际是要做加法。在做减法 时,还要判断操作数绝对值的大小,这些都会使运算器的设计变得很复杂。而补码这种编码方式实际上正是针对上述问题的。通过用补码进行表示,就可以把减法运 算化为加法运算。

在日常生活中,有许多化减为加的例子。例如,时钟是逢12进位,12点也可看作0点。当将时针从10点调整到5点时有以下两种方法:

一种方法是时针逆时针方向拨5格,相当于做减法:

10-5=5

另一种方法是时针顺时针方向拨7格,相当于做加法:

10+7=12+5=5    (MOD 12)

这是由于时钟以12 为模,在这个前提下,当和超过12时,可将12舍去。于是,减5相当于加7。同理,减4可表示成加8,减3可表示成加9,…。

在数学中,用“同余”概念描述上述关系,即两整数A、B用同一个正整数M (M称为模)去除而余数相等,则称A、B对M同余,记作:

A=B     (MOD M)

具有同余关系的两个数为互补关系,其中一个称为另一个的补码。当M=12时,-5和+7,-4和+8,-3和+9就是同余的,它们互为补码。

从同余的概念和上述时钟的例子,不难得出结论:对于某一确定的模,用某数减去小于模的另一个数,总可以用加上“模减去该数绝对值的差”来代替。因此,在有模运算中,减法就可以化作加法来做。

可以看出,补码的加法运算所依据的基本关系为:

[x]补+ [y]补= [x+y]补

补码减法所依据的基本关系式:

[x-y]补 =[x+(-y)]补= [x]补+ [-y]补

至于加法运算为什么比减法运算易于实现以及CPU如何实现各种算术运算等问题,则需要通过对数字电路的学习来理解CPU的运算器的硬件实现问题的相关内容了。

[java]负数的二进制编码——越是基础的越是要掌握的更多相关文章

  1. Java:IO流与文件基础

    Java:IO流与文件基础 说明: 本章内容将会持续更新,大家可以关注一下并给我提供建议,谢谢啦. 走进流 什么是流 流:从源到目的地的字节的有序序列. 在Java中,可以从其中读取一个字节序列的对象 ...

  2. [Java入门笔记] 面向对象编程基础(二):方法详解

    什么是方法? 简介 在上一篇的blog中,我们知道了方法是类中的一个组成部分,是类或对象的行为特征的抽象. 无论是从语法和功能上来看,方法都有点类似与函数.但是,方法与传统的函数还是有着不同之处: 在 ...

  3. Java程序设计的DOS命令基础

    Java程序设计的DOS命令基础 用户使用操作系统和软件有两种方式:命令行界面(Command Line Interface,CLI)和图形界面(Graphical User Interface,GU ...

  4. Java中实现异常处理的基础知识

    Java中实现异常处理的基础知识 异常 (Exception):发生于程序执行期间,表明出现了一个非法的运行状况.许多JDK中的方法在检测到非法情况时,都会抛出一个异常对象. 例如:数组越界和被0除. ...

  5. JAVA面试题集之基础知识

                           JAVA面试题集之基础知识 基础知识:  1.C 或Java中的异常处理机制的简单原理和应用. 当JAVA程序违反了JAVA的语义规则时,JAVA虚拟机就 ...

  6. Java学习笔记:语言基础

    Java学习笔记:语言基础 2014-1-31   最近开始学习Java,目的倒不在于想深入的掌握Java开发,而是想了解Java的基本语法,可以阅读Java源代码,从而拓展一些知识面.同时为学习An ...

  7. Java IO 文件与流基础

    Java IO 文件与流基础 @author ixenos 摘要:创建文件.文件过滤.流分类.流结构.常见流.文件流.字节数组流(缓冲区) 如何创建一个文件 #当我们调用File类的构造器时,仅仅是在 ...

  8. 深入解析Java反射(1) - 基础

    深入解析Java反射(1) - 基础 最近正筹备Samsara框架的开发,而其中的IOC部分非常依靠反射,因此趁这个机会来总结一下关于Java反射的一些知识.本篇为基本篇,基于JDK 1.8. 一.回 ...

  9. Java应用程序连接数据库--JDBC基础

    Java应用程序连接数据库--JDBC基础   Java应用程序连接数据库–JDBC基础 <!-- MySQL驱动,连接数据库用,由数据库厂商提供 --> <dependency&g ...

随机推荐

  1. C++/C# 开发高级案例资料一次送!关注加群领取哦!

    目前C/C++.C#.JAVA等语言开发的在线教育比较火爆,但小编所见的讲解高级案例的非常少,切合市场需求的较少.而且针对铁路.公路.建筑.市政.制造业等所有工业计算机辅助设计的开发技术和案例几乎没有 ...

  2. 终止Docker容器

    可以使用 docker stop 来终止一个运行中的容器. 此外,当Docker容器中指定的应用终结时,容器也自动终止. 例如对于上一章节中只启动了一个终端的容器,用户通过 exit 命令或 Ctrl ...

  3. 两个activity之间透明过渡效果和经验

    来看下效果图: 大致效果解释: 1. 当用户点击登录时logo下滑一定距离 2. 下滑后旋转90时 变化图标 3. 继续旋转90度 4. 然后移动到左上角 透明度渐变到上个activity 最后销毁当 ...

  4. 20160227.CCPP体系详解(0037天)

    程序片段(01):01.一对一模式.c+02.中介者模式.c+03.广播模式.c 内容概要:事件 ///01.一对一模式.c #include <stdio.h> #include < ...

  5. Mybatis 批量插入、批量更新

            合理的使用批量插入.更新对性能优化有很大的作用,速度明显快了N倍.         要注意数据库连接串后面要新增:&allowMultiQueries=true,表示一个sql ...

  6. TextView的升级版———AutoCompleteTextView

    TextView的升级版---AutoCompleteTextView AutoCompleteTextView顾名知义,可以自动提示的TextView,还可以提示错误信息. 这里介绍基本的使用,能够 ...

  7. Android Multimedia框架总结(十)Stagefright框架之音视频输出过程

    转载请把头部出处链接和尾部二维码一起转载,本文出自逆流的鱼yuiop:http://blog.csdn.net/hejjunlin/article/details/52560012 前言:上篇文中最后 ...

  8. 全文检索概念,Lucene大致结构

    1.1 常见的全文检索 1) 在window系统中,可以指定磁盘中的某一个位置来搜索你想要得到的东西. 2) 在myeclipse中,点击Help->Help Contents,可以利用搜索功能 ...

  9. ROS探索总结(十七)——构建完整的机器人应用系统

           上一篇博客介绍了HRMRP机器人平台的设计,基于该平台,可以完成丰富的机器人应用,以较为典型的机器人导航为例,如何使用HRMRP来完成相应的功能?本篇博客将详细介绍如何将HRMRP应用到 ...

  10. 【Android 系统开发】使用 Source InSight 阅读 Android 源码

    1. 安装 Source Insight (1) Source Insight 相关资源 安装相关资源 : -- 下载地址 : http://www.sourceinsight.com/down35. ...