python单线程,多线程和协程速度对比
在某些应用场景下,想要提高python的并发能力,可以使用多线程,或者协程。比如网络爬虫,数据库操作等一些IO密集型的操作。下面对比python单线程,多线程和协程在网络爬虫场景下的速度。
一,单线程。
单线程代
1 #!/usr/bin/env
2 # coding:utf8
3 # Author: hz_oracle import MySQLdb
import gevent
import requests
import time class DbHandler(object):
def __init__(self, host, port, user, pwd, dbname):
self.host = host
self.port = port
self.user = user
self.pwd = pwd
self.db = dbname def db_conn(self):
try:
self.conn = MySQLdb.connect(host=self.host, port=self.port, user=self.user, passwd=self.pwd, db=self.db, charset="utf8")
self.cursor = self.conn.cursor()
return 1
except Exception as e:
return 0 def get_urls(self, limitation):
sql = """select pic from picurltable limit %s""" % limitation
urls_list = list()
try:
self.cursor.execute(sql)
fetchresult = self.cursor.fetchall()
for line in fetchresult:
urls_list.append(line[0])
print len(urls_list)
except Exception as e:
print u"数据库查询失败:%s" % e
return []
return urls_list def db_close(self):
self.conn.close() def get_pic(url):
try:
pic_obj = requests.get(url).content
except Exception as e:
print u"图片出错"
return ""
filename = url.split('/')[-2]
file_path = "./picture/" + filename + '.jpg'
fp = file(file_path, 'wb')
fp.write(pic_obj)
fp.close()
return "ok" def main():
start_time = time.time()
db_obj = DbHandler(host='127.0.0.1', port=3306, user='root', pwd='123456', dbname='pic')
db_obj.db_conn()
url_list = db_obj.get_urls(100)
map(get_pic, url_list)
#for url in url_list:
# get_pic(url)
end_time = time.time()
costtime = float(end_time) - float(start_time)
print costtime
print "download END" if __name__ == "__main__":
main()
运行结果
100
45.1282339096
download END
单线程情况下,下载100张图片花了45秒。
再来看多线程的情况下。
#!/usr/bin/env python
# coding:utf8
# Author: hz_oracle import MySQLdb
import gevent
import requests
import time
import threading
import Queue lock1 = threading.RLock()
url_queue = Queue.Queue()
urls_list = list() class DbHandler(object):
def __init__(self, host, port, user, pwd, dbname):
self.host = host
self.port = port
self.user = user
self.pwd = pwd
self.db = dbname def db_conn(self):
try:
self.conn = MySQLdb.connect(host=self.host, port=self.port, user=self.user, passwd=self.pwd, db=self.db, charset="utf8")
self.cursor = self.conn.cursor()
return 1
except Exception as e:
return 0 def get_urls(self, limitation):
sql = """select pic from picurltable limit %s""" % limitation
try:
self.cursor.execute(sql)
fetchresult = self.cursor.fetchall()
for line in fetchresult:
url_queue.put(line[0])
except Exception as e:
print u"数据库查询失败:%s" % e
return 0
return 1 def db_close(self):
self.conn.close() class MyThread(threading.Thread):
def __init__(self):
super(MyThread, self).__init__() def run(self):
url = url_queue.get()
try:
pic_obj = requests.get(url).content
except Exception as e:
print u"图片出错"
return ""
filename = url.split('/')[-2]
file_path = "./picture/" + filename + '.jpg'
fp = file(file_path, 'wb')
fp.write(pic_obj)
fp.close() def main():
start_time = time.time()
db_obj = DbHandler(host='127.0.0.1', port=3306, user='root', pwd='', dbname='pic')
db_obj.db_conn()
db_obj.get_urls(100)
for i in range(100):
i = MyThread()
i.start()
while True:
if threading.active_count()<=1:
break
end_time = time.time()
costtime = float(end_time) - float(start_time)
print costtime
print "download END" if __name__ == "__main__":
main()
运行结果
15.408192873
download END
启用100个线程发现只要花15秒即可完成任务,100个线程可能不是最优的方案,但较单线程有很明显的提升。接着再来看协程。
协程代码
#!/usr/bin/env python
# coding:utf8
# Author: hz_oracle import MySQLdb
import requests
import time
import threading
import Queue from gevent import monkey; monkey.patch_all()
import gevent class DbHandler(object):
def __init__(self, host, port, user, pwd, dbname):
self.host = host
self.port = port
self.user = user
self.pwd = pwd
self.db = dbname def db_conn(self):
try:
self.conn = MySQLdb.connect(host=self.host, port=self.port, user=self.user, passwd=self.pwd, db=self.db, charset="utf8")
self.cursor = self.conn.cursor()
return 1
except Exception as e:
return 0 def get_urls(self, limitation):
urls_list = list()
sql = """select pic from picurltable limit %s""" % limitation
try:
self.cursor.execute(sql)
fetchresult = self.cursor.fetchall()
for line in fetchresult:
urls_list.append(line[0])
except Exception as e:
print u"数据库查询失败:%s" % e
return []
return urls_list def db_close(self):
self.conn.close() def get_pic(url):
try:
pic_obj = requests.get(url).content
except Exception as e:
print u"图片出错"
return ""
filename = url.split('/')[-2]
file_path = "./picture/" + filename + '.jpg'
fp = file(file_path, 'wb')
fp.write(pic_obj)
fp.close()
return "ok" def main():
start_time = time.time()
db_obj = DbHandler(host='127.0.0.1', port=3306, user='root', pwd='123456', dbname='pic')
db_obj.db_conn()
url_list = db_obj.get_urls(100)
gevent.joinall([gevent.spawn(get_pic,url) for url in url_list]) end_time = time.time()
costtime = float(end_time) - float(start_time)
print costtime
print "download END" if __name__ == "__main__":
main()
运行结果
10.6234440804
download END
使用协程发现只花了10秒多,也就是三种方法中最快的。
总结:
三种方法中,单线程最慢,多线程次之,而协程最快。 不过如果对多线程进行优化,也可能变快,这里不讨论。
python单线程,多线程和协程速度对比的更多相关文章
- Python并发编程二(多线程、协程、IO模型)
1.python并发编程之多线程(理论) 1.1线程概念 在传统操作系统中,每个进程有一个地址空间,而且默认就有一个控制线程 线程顾名思义,就是一条流水线工作的过程(流水线的工作需要电源,电源就相当于 ...
- python 多进程,多线程,协程
在我们实际编码中,会遇到一些并行的任务,因为单个任务无法最大限度的使用计算机资源.使用并行任务,可以提高代码效率,最大限度的发挥计算机的性能.python实现并行任务可以有多进程,多线程,协程等方式. ...
- Python并发编程——多线程与协程
Pythpn并发编程--多线程与协程 目录 Pythpn并发编程--多线程与协程 1. 进程与线程 1.1 概念上 1.2 多进程与多线程--同时执行多个任务 2. 并发和并行 3. Python多线 ...
- 深入浅析python中的多进程、多线程、协程
深入浅析python中的多进程.多线程.协程 我们都知道计算机是由硬件和软件组成的.硬件中的CPU是计算机的核心,它承担计算机的所有任务. 操作系统是运行在硬件之上的软件,是计算机的管理者,它负责资源 ...
- python并发编程之协程知识点
由线程遗留下的问题:GIL导致多个线程不能真正的并行,CPython中多个线程不能并行 单线程实现并发:切换+保存状态 第一种方法:使用yield,yield可以保存状态.yield的状态保存与操作系 ...
- Cpython解释器下实现并发编程——多进程、多线程、协程、IO模型
一.背景知识 进程即正在执行的一个过程.进程是对正在运行的程序的一个抽象. 进程的概念起源于操作系统,是操作系统最核心的概念,也是操作系统提供的最古老也是最重要的抽象概念之一.操作系统的其他所有内容都 ...
- Python之并发编程-协程
目录 一.介绍 二. yield.greenlet.gevent介绍 1.yield 2.greenlet 3.gevent 一.介绍 协程:是单线程下的并发,又称微线程,纤程.英文名Coroutin ...
- python进阶——进程/线程/协程
1 python线程 python中Threading模块用于提供线程相关的操作,线程是应用程序中执行的最小单元. #!/usr/bin/env python # -*- coding:utf-8 - ...
- 32 python 并发编程之协程
一 引子 本节的主题是基于单线程来实现并发,即只用一个主线程(很明显可利用的cpu只有一个)情况下实现并发,为此我们需要先回顾下并发的本质:切换+保存状态 cpu正在运行一个任务,会在两种情况下切走去 ...
随机推荐
- Java-IO之BufferedInputStream(缓冲输入流)
BufferedInputStream是缓冲输入流,继承于FilterInputStream,作用是为另一个输入流添加一些功能,本质上是通过一个内部缓冲数组实现的.例如,在新建某输入流对应的Buffe ...
- 学习笔记-JS公开课三
DOM技术概述 DOM : DocumentObject Model 将HTML标记型文档,封装成对象,提供更多的属性和行为 DOM的三级模型 第一级:将标记型文档,封装成对象,提供更多的属性和行为 ...
- HttpClient4登陆有验证码的网站
其实就这个问题,本来是很简单的,我自己花了近两个下午才搞定,现在记录一下.也希望能帮助后来的朋友. 先说httpclient 操蛋的httpclent! 为什么说操蛋呢,因为从httpclient ...
- (六十五)iOS的socket实现(GCDAsyncSocket)
本文介绍使用GCDAsyncSocket来实现iOS端的socket,有关简易服务端的代码已经在上一篇文章中提到,这里不再赘述,将直接介绍如何实现客户端. 首先下载CocoaAsyncSocket框架 ...
- Andoird Crash的跟踪方法,使用腾讯Bugly来捕捉一些疑难杂症,让我们APP稳定上线
Andoird Crash的跟踪方法,使用腾讯Bugly来捕捉一些疑难杂症,让我们APP稳定上线 我们在开发中常常会注意到一些Crash,这正是很头疼的,而且Crash会带来很多意想不到的状态,很恶心 ...
- Linux IPC实践(4) --System V消息队列(1)
消息队列概述 消息队列提供了一个从一个进程向另外一个进程发送一块数据的方法(仅局限于本机); 每个数据块都被认为是有一个类型,接收者进程接收的数据块可以有不同的类型值. 消息队列也有管道一样的不足: ...
- 【IOS 开发】Object-C 入门 Xcode 环境详解
作者 : 韩曙亮 转载请注明出处 : http://blog.csdn.net/shulianghan/article/details/38424965 一. Xcode 环境安装 与 工程创建 1. ...
- mixer: 一个用go实现的mysql proxy
介绍 mixer是一个用go实现的mysql proxy,支持基本的mysql代理功能. mysql的中间件很多,对于市面上面现有的功能强大的proxy,我主要考察了如下几个: mysql-proxy ...
- PageContext ServletContext ServletConfig辨析
上面三个东西都是什么关系呀? 先看图 注意几点 1 GenericServlet有两个init方法# 2 GenericServlet既实现了ServletConfig方法,它自己由依赖一个Servl ...
- 【Android 系统开发】Android框架 与 源码结构
一. Android 框架 Android框架层级 : Android 自下 而 上 分为 4层; -- Linux内核层; -- 各种库 和 Android运行环境层; -- 应用框架层; -- 应 ...