poj 2417 && poj3243(Baby-Step Giant-Step)
| Time Limit: 5000MS | Memory Limit: 65536K | |
| Total Submissions: 4624 | Accepted: 2113 |
Description
B
L
== N (mod P)
Input
Output
Sample Input
5 2 1
5 2 2
5 2 3
5 2 4
5 3 1
5 3 2
5 3 3
5 3 4
5 4 1
5 4 2
5 4 3
5 4 4
12345701 2 1111111
1111111121 65537 1111111111
Sample Output
0
1
3
2
0
3
1
2
0
no solution
no solution
1
9584351
462803587
题意:
a^x = b(mod n) ,求解x(模板题)
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
typedef long double ld; using namespace std;
#define MOD 76543
int hs[MOD],head[MOD],Next[MOD],id[MOD],top; void insert(int x,int y)
{
int k = x % MOD;
hs[top] = x,id[top] = y,Next[top] = head[k],head[k] = top++;
} int find(int x)
{
int k = x % MOD;
for(int i = head[k];i != -;i= Next[i])
{
if(hs[i] == x)
return id[i];
}
return -;
} int BSGS(int a,int b,int n)
{
memset(head,-,sizeof(head));
top = ;
if(b == )
return ;
int m = sqrt(n*1.0),j;
long long x = ,p =;
for(int i = ;i < m;i++,p = p*a%n)
insert(p*b%n,i);
for(ll i = m;;i+=m)
{
if((j = find(x = x*p % n)) != -) return i-j;
if(i > n) break;
}
return -;
} int main()
{
int p,b,n;
while(scanf("%d%d%d",&p,&b,&n) != EOF)
{
int ans = BSGS(b,n,p);
if(ans == -)
printf("no solution\n");
else
printf("%d\n",ans);
}
return ;
}
poj 2417 && poj3243(Baby-Step Giant-Step)的更多相关文章
- POJ 2417 Discrete Logging ( Baby step giant step )
Discrete Logging Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 3696 Accepted: 1727 ...
- POJ 3243 Clever Y (求解高次同余方程A^x=B(mod C) Baby Step Giant Step算法)
不理解Baby Step Giant Step算法,请戳: http://www.cnblogs.com/chenxiwenruo/p/3554885.html #include <iostre ...
- 解高次同余方程 (A^x=B(mod C),0<=x<C)Baby Step Giant Step算法
先给出我所参考的两个链接: http://hi.baidu.com/aekdycoin/item/236937318413c680c2cf29d4 (AC神,数论帝 扩展Baby Step Gian ...
- 数论之高次同余方程(Baby Step Giant Step + 拓展BSGS)
什么叫高次同余方程?说白了就是解决这样一个问题: A^x=B(mod C),求最小的x值. baby step giant step算法 题目条件:C是素数(事实上,A与C互质就可以.为什么?在BSG ...
- 【POJ2417】baby step giant step
最近在学习数论,然而发现之前学的baby step giant step又忘了,于是去翻了翻以前的代码,又复习了一下. 觉得总是忘记是因为没有彻底理解啊. 注意baby step giant step ...
- [置顶] hdu2815 扩展Baby step,Giant step入门
题意:求满足a^x=b(mod n)的最小的整数x. 分析:很多地方写到n是素数的时候可以用Baby step,Giant step, 其实研究过Baby step,Giant step算法以后,你会 ...
- HDU 2815 Mod Tree 离散对数 扩张Baby Step Giant Step算法
联系:http://acm.hdu.edu.cn/showproblem.php?pid=2815 意甲冠军: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQ ...
- 『高次同余方程 Baby Step Giant Step算法』
高次同余方程 一般来说,高次同余方程分\(a^x \equiv b(mod\ p)\)和\(x^a \equiv b(mod\ p)\)两种,其中后者的难度较大,本片博客仅将介绍第一类方程的解决方法. ...
- HDU 2815 扩展baby step giant step 算法
题目大意就是求 a^x = b(mod c) 中的x 用一般的baby step giant step 算法会超时 这里参考的是http://hi.baidu.com/aekdycoin/item/2 ...
- 【学习笔记】Baby Step Giant Step算法及其扩展
1. 引入 Baby Step Giant Step算法(简称BSGS),用于求解形如\(a^x\equiv b\pmod p\)(\(a,b,p\in \mathbb{N}\))的同余方程,即著名的 ...
随机推荐
- Python upper()方法
描述 Python upper() 方法将字符串中的小写字母转为大写字母. 语法 upper()方法语法: str.upper() 参数 NA. 返回值 返回小写字母转为大写字母的字符串. 实例 以下 ...
- 服务器数据恢复_服务器xfs数据丢失数据恢复
简介:太原一家公司的服务器出现故障,服务器是linux服务器,连接了一台某型号的存储,文件系统为xfs文件系统.管理员使用xfs_repair工具试图对文件系统进行修复但修复失败,linux服务器中所 ...
- OO第一次作业总结
OO第一次学习总结 1.第一次作业:多项式加法 从未接触过java的我,在从输入输出开始学了几天后,按照C语言的思路,写出了一个与面向过程极其接近的程序. 在这个程序中,存在两个类:一个是Comput ...
- Windows 的Apache支持SSI配置
配置SSI什么是shtml? 使用SSI(Server Side Include)的html文件扩展名,SSI(Server Side Include),通常称为"服务器端嵌入"或 ...
- 一个诚实的孩纸选Python的原因
我之所以会选择python语言程序设计这门课,是因为我一开始预选选的选修课都没选上,然后在补选的时候,在别人选剩的课里面选择了python. 上了两节课之后,我发现python还挺有意思的,挺喜欢py ...
- 批量检测GoAhead系列服务器中Digest认证方式的服务器弱口令
最近在学习用python写爬虫工具,某天偶然发现GoAhead系列服务器的登录方式跟大多数网站不一样,不是采用POST等方法,通过查找资料发现GoAhead是一个开源(商业许可).简单.轻巧.功能强大 ...
- SpringCloud的服务消费者 (一):(rest+ribbon)访问注册的微服务
采用Ribbon或Feign方式访问注册到EurekaServer中的微服务.1.Ribbon实现了客户端负载均衡,Feign底层调用Ribbon2.注册在EurekaServer中的微服务api,不 ...
- 详解Ajax请求(二)——异步请求原理的分析
在上一文章里,我们分析了同步请求的原理.当浏览器向服务器发送同步请求时,服务处理同步请求的过程中,浏览器会处于等待的状态,服务器处理完请求把数据响应给浏览器并覆盖浏览器内存中原有的数据,浏览器重新加载 ...
- 在Linux的Terminal中显示文本文件特定行的内容
假设要操纵的文本文件的文件名是 textFile现在想做的事情是在不以编辑模式打开文件的情况下在终端直接提取并输出指定文本文件的指定行的内容 在终端提取指定文本文件的指定行的内容 Tool Comma ...
- 南京邮电大学java程序设计作业在线编程第三次作业
王利国的"Java语言程序设计第3次作业(2018)"详细 作业结果详细 总分:100 选择题得分:60 1. 设有如下定义语句: String s1="My cat& ...