You are given a string S which consists of 250000 lowercase latin letters at most. We define F(x) as the maximal number of times that some string with length x appears in S. For example for string 'ababa' F(3) will be 2 because there is a string 'aba' that occurs twice. Your task is to output F(i) for every i so that 1<=i<=|S|.

Input

String S consists of at most 250000 lowercase latin letters.

Output

Output |S| lines. On the i-th line output F(i).

Example

Input:
ababa Output:
3
2
2
1
1 题解:
这..比上题还简单啊,根据parent树上父节点为子节点的最大子集,直接统计size即可,
英语不好看成了求和........3WA
 #include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
using namespace std;
const int N=,M=;
char s[N];int n,last=,cnt=,cur=,dis[M],ch[M][],fa[M],size[M];
void build(int j){
int c=s[j]-'a';
last=cur;cur=++cnt;
int p=last;dis[cur]=j;
for(;p && !ch[p][c];p=fa[p])ch[p][c]=cur;
if(!p)fa[cur]=;
else{
int q=ch[p][c];
if(dis[q]==dis[p]+)fa[cur]=q;
else{
int nt=++cnt;
dis[nt]=dis[p]+;
memcpy(ch[nt],ch[q],sizeof(ch[q]));
fa[nt]=fa[q];fa[q]=fa[cur]=nt;
for(;ch[p][c]==q;p=fa[p])ch[p][c]=nt;
}
}
size[cur]=;
}
int sa[M];long long ans[N],c[N];
void Flr(){
int p;
for(int i=;i<=cnt;i++)c[dis[i]]++;
for(int i=;i<=n;i++)c[i]+=c[i-];
for(int i=cnt;i>=;i--)sa[c[dis[i]]--]=i;
for(int i=cnt;i>=;i--){
p=sa[i];
if(size[p]>ans[dis[p]])ans[dis[p]]=size[p];
size[fa[p]]+=size[p];
}
}
void work(){
scanf("%s",s+);
n=strlen(s+);
for(int i=;i<=n;i++)build(i);
Flr();
for(int i=;i<=n;i++)printf("%lld\n",ans[i]);
}
int main()
{
//freopen("pp.in","r",stdin);
work();
return ;
}

 

SPOJ NSUBSTR的更多相关文章

  1. SPOJ - NSUBSTR 后缀自动机板子

    SPOJ - NSUBSTR #include<bits/stdc++.h> #define LL long long #define fi first #define se second ...

  2. SPOJ NSUBSTR (后缀自动机)

    SPOJ NSUBSTR Problem : 给一个长度为n的字符串,要求分别输出长度为1~n的子串的最多出现次数. Solution :首先对字符串建立后缀自动机,在根据fail指针建立出后缀树,对 ...

  3. 【spoj NSUBSTR】 Substrings

    http://www.spoj.com/problems/NSUBSTR/ (题目链接) 题意 给出一个字符串S,令${F(x)}$表示S的所有长度为x的子串出现次数的最大值.求${F(1)..... ...

  4. SPOJ NSUBSTR Substrings 后缀自动机

    人生第一道后缀自动机,总是值得纪念的嘛.. 后缀自动机学了很久很久,先是看CJL的论文,看懂了很多概念,关于right集,关于pre,关于自动机的术语,关于为什么它是线性的结点,线性的连边.许多铺垫的 ...

  5. SPOJ NSUBSTR Substrings

    题意 dt { font-weight: bold; margin-top: 20px; padding-left: 35px; } dd { box-shadow: 3px 3px 6px #888 ...

  6. SPOJ - NSUBSTR(长度为1-len的字串出现的最大次数

    题意:给你一个字符串,要你输出1-len的字串出现的最大次数. /** @xigua */ #include <stdio.h> #include <cmath> #inclu ...

  7. 【SPOJ -NSUBSTR】Substrings 【后缀自动机+dp】

    题意 给出一个字符串,要你找出所有长度的子串分别的最多出现次数. 分析 我们建出后缀自动机,然后预处理出每个状态的cnt,cnt[u]指的是u这个状态的right集合大小.我们设f[len]为长度为l ...

  8. SPOJ NSUBSTR Substrings ——后缀自动机

    建后缀自动机 然后统计次数,只需要算出right集合的大小即可, 然后更新f[l[i]]和rit[i]取个max 然后根据rit集合短的一定包含长的的性质,从后往前更新一遍即可 #include &l ...

  9. spoj NSUBSTR - Substrings【SAM】

    先求个SAM,然后再每个后缀的对应点上标记si[nw]=1,造好SAM之后用吧parent树建出来把si传上去,然后用si[u]更新f[max(u)],最后用j>i的[j]更新f[i] 因为每个 ...

随机推荐

  1. REST or RPC?

    1 概念 1.1 RPC RPC(Remote Procedure Call)-远程过程调用,它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议.RPC协议假定某些传输协议的存 ...

  2. [JCIP笔记] (三)如何设计一个线程安全的对象

    在当我们谈论线程安全时,我们在谈论什么中,我们讨论了怎样通过Java的synchronize机制去避免几个线程同时访问一个变量时发生问题.忧国忧民的Brian Goetz大神在多年的开发过程中,也悟到 ...

  3. 用anaconda安装最新的TensorFlow版本

    Google发布了TensorFlow1.4正式版 在anaconad搜索依旧是1.2的版本,通过一番查阅,找到了方法 1,打开anaconda-prompt 2,激活你要安装的环境 activate ...

  4. python中的赋值与深浅拷贝

    Python当中对于拷贝,分为两种类型.一种是数字和字符串,另一种就是列表.元组.字典等其他类型了. 一.数字和字符串的拷贝 1.赋值 举个栗子: a1 = 123123 a2 = 123123 # ...

  5. 大数据学习总结(7)we should...

    大数据场景一.各种标签查询 查询要素:人.事.物.单位 查询范围:A范围.B范围.... 查询结果:pic.name.data from 1.痛点:对所有文本皆有实时查询需求2.难点:传统SQL使用W ...

  6. docker生态系统

    我的docker学习笔记6-docker生态   1.镜像即应用       代码构建.持续集成和持续交付        DaoCloud.Quay.IO 2.催生容器托管caas服务       基 ...

  7. 新概念英语(1-31)Where's Sally?

    新概念英语(1-31)Where's Sally? Is the cat climbing the tree ? A:Where is Sally, Jack ? B:She is in the ga ...

  8. 200行Py代码带你实现"打飞机"

    前言 多年前,你我在一起"打飞机".为了实现真正的打飞机,在下一年前踏足帝都学习了无所不能的Python,辣么接下来带你在俩个小时用200行代码学会打飞机. python中提供了一 ...

  9. kafka--- consumer 消费消息

    1. consumer API kafka 提供了两套 consumer API: 1. The high-level Consumer API 2. The SimpleConsumer API 其 ...

  10. BAT美团滴滴java面试大纲(带答案版)之三:多线程Lock

    继续面试大纲系列文章. 这是多线程的第二篇. 多线程就像武学中对的吸星大法,理解透了用好了可以得道成仙,俯瞰芸芸众生:而滥用则会遭其反噬. 在多线程编程中要渡的第二个“劫”,则是Lock.在很多时候, ...