仍然是学弟出的题目的原题@lher 学弟将题目改成了多组数据,n在ll范围内,所以我就只讲提高版的做法。

链接:https://www.luogu.org/problem/show?pid=2233

题意分析:看题目:)

解题思路:显然对于n为奇数的情况不存在任意路线。接下来我们进行观察数据,显然这题是要递推的。接下来通过暴力打表加手算,我们推出了这个公式:

f[i]=4*f[i-1]-2*f[i-2],f[1]=2,f[2]=8,然后构造对应矩阵进行矩阵快速幂即可得到答案。时间效率\( O ( 2^3 \lg n) \)。

附AC代码:

#include<stdio.h>
#include<iostream>
#include<cmath>
#include<cstring>
#include<string>
#include<algorithm>
#define ll long long
#define mod 10007
using namespace std;
struct zxy{
ll a[][];
}jichu,a,b;
ll n;
inline ll in(){
ll x=,f=;
char ch=getchar();
while(ch<''||ch>'') {if(ch=='-') f=-; ch=getchar();}
while(ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x*f;
}
inline zxy mult(zxy a,zxy b){
zxy c;
memset(c.a,,sizeof(c.a));
for (int i=; i<=; ++i)
for (int j=; j<=; ++j)
for (int k=; k<=; ++k)
c.a[i][j]+=(a.a[i][k]*b.a[k][j]+*mod)%mod,c.a[i][j]=(c.a[i][j]+*mod)%mod;
return c;
}
inline zxy ksm(zxy a,ll k){
if (k==) return jichu;
if (k==) return a;
zxy tt=ksm(a,k>>);
if (k&) return mult(a,mult(tt,tt));
return mult(tt,tt);
}
int main(){
int T=in();
memset(jichu.a,,sizeof(jichu.a));
memset(b.a,,sizeof(b.a));
memset(a.a,,sizeof(a.a));
jichu.a[][]=jichu.a[][]=;
b.a[][]=;b.a[][]=;
a.a[][]=;a.a[][]=-+mod,a.a[][]=;
while(T--){
n=in();
if (n&) printf("0\n");
else{
n=n/-;
if (n<) printf("%lld\n",b.a[n][]);
else{ zxy ans=mult(ksm(a,n-),b);printf("%lld\n",ans.a[][]);}
}
}
return ;
}

本文由Melacau编写,Melacau代表M星向您问好,如果您不是在我的博客http://www.cnblogs.com/Melacau上看到本文,请您向我联系,email:13960948839@163.com.

【HNOI2002】【矩阵快速幂】公交车路线的更多相关文章

  1. 【模板】矩阵快速幂 洛谷P2233 [HNOI2002]公交车路线

    P2233 [HNOI2002]公交车路线 题目背景 在长沙城新建的环城公路上一共有8个公交站,分别为A.B.C.D.E.F.G.H.公共汽车只能够在相邻的两个公交站之间运行,因此你从某一个公交站到另 ...

  2. hdu2157之矩阵快速幂

    How many ways?? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  3. bzoj2004 矩阵快速幂优化状压dp

    https://www.lydsy.com/JudgeOnline/problem.php?id=2004 以前只会状压dp和矩阵快速幂dp,没想到一道题还能组合起来一起用,算法竞赛真是奥妙重重 小Z ...

  4. BZOJ2004 HNOI2010公交线路(状压dp+矩阵快速幂)

    由数据范围容易想到矩阵快速幂和状压. 显然若要满足一辆公交车的相邻站台差不超过p,则每相邻p个站台中每辆车至少经过一个站台.可以发现这既是必要的,也是充分的. 开始的时候所有车是相邻的.考虑每次把一辆 ...

  5. HDU 2157(矩阵快速幂)题解

    How many ways?? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  6. BZOJ 2004 公交线路(状压DP+矩阵快速幂)

    注意到每个路线相邻车站的距离不超过K,也就是说我们可以对连续K个车站的状态进行状压. 然后状压DP一下,用矩阵快速幂加速运算即可. #include <stdio.h> #include ...

  7. How many ways?? HDU - 2157 矩阵快速幂

    题目描述 春天到了, HDU校园里开满了花, 姹紫嫣红, 非常美丽. 葱头是个爱花的人, 看着校花校草竞相开放, 漫步校园, 心情也变得舒畅. 为了多看看这迷人的校园, 葱头决定, 每次上课都走不同的 ...

  8. 矩阵快速幂 HDU 4565 So Easy!(简单?才怪!)

    题目链接 题意: 思路: 直接拿别人的图,自己写太麻烦了~ 然后就可以用矩阵快速幂套模板求递推式啦~ 另外: 这题想不到或者不会矩阵快速幂,根本没法做,还是2013年长沙邀请赛水题,也是2008年Go ...

  9. 51nod 算法马拉松18 B 非010串 矩阵快速幂

    非010串 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 如果一个01字符串满足不存在010这样的子串,那么称它为非010串. 求长度为n的非010串的个数.(对1e9+7取模) ...

随机推荐

  1. 冲刺NO.12

    Alpha冲刺第十二天 站立式会议 项目进展 项目核心功能,如学生基本信息管理模块,学生信用信息模块,奖惩事务管理模块等等都已完成,测试工作大体结束. 问题困难 项目结束后对项目的阶段性总结缺乏一定的 ...

  2. Linux下ftp和ssh详解

    学习了几天Linux下ftp和ssh的搭建和使用,故记录一下.学习ftp和ssh的主要目的是为了连接远程主机,并且进行文件传输.废话不多说,直接开讲! ftp服务器 1. 环境搭建 本人的系统是Arc ...

  3. 常用的 html 标签及注意事项

    <a> 标签 用法:用于定义超链接 清除浏览器默认样式: a { text-decoration: none;/* 去除下划线 */ color: #333;/* 改变链接颜色 */ } ...

  4. margin-top导致父标签偏移问题

    从一个大神博客中看到这句话: 这个问题发生的原因是根据规范,一个盒子如果没有上补白(padding-top)和上边框(border-top),那么这个盒子的上边距会和其内部文档流中的第一个子元素的上边 ...

  5. 常用Mysql数据库操作语句

    用户管理: 1.新建用户: 语法msyql>CREATE USER 'username'@'host' IDENTIFIED BY 'password'; 说明: username - 你将创建 ...

  6. python端口扫描用多线程+线程安全的队列+Thread类实现

    用线程安全的队列Queue实现扫描端口数据存储 用多线程扫描端口 用Thread类实现程序组织 #coding:utf-8 import sys import socket import sys im ...

  7. eclipse怎么停止building workspace

    Eclipse 一直不停 building workspace完美解决总结 一.产生这个问题的原因多种 1.自动升级 2.未正确关闭 3.maven下载lib挂起 等.. 二.解决总结 (1).解决方 ...

  8. Eclipse在线更新慢

    一.去掉不必要的更新 打开Windows-Preferences -> Install/Update –> Available Software Sites,将不需要的更新停用 二.关闭自 ...

  9. OAuth2.0学习(1-12)开源的OAuth2.0项目和比较

    OAuth2.0学习(2-1)OAuth的开源项目   1.开源项目列表 http://www.oschina.net/project/tag/307/oauth?lang=19&sort=t ...

  10. Bootstrap 栅格系统简单整理

    Bootstrap内置了一套响应式.移动设备优先的流式栅格系统,随着屏幕设备或视口(viewport)尺寸的增加,系统会自动分为最多12列. 总结一下我近期的学习Bootstrap的一些理解: 一.. ...