在Python中,使用list可以保存一组值,可以作为数组使用,但是比较浪费内存和时间。类似的array模块,不支持多维,也没有各种函数运算,因此也极其不方便。

为解决这一问题,Python提供了Numpy模块,支持N维数组运算、处理大型矩阵、广播函数库、矢量运算等。

1.1函数库的导入

在使用这个库的第一步,先导入numpy模块,根据Python社区的习惯,代码如下:

>>>import numpy as np 

1.2数组创建

1.2.1Array函数

一般情况下,我们可以使用array函数把Python中的列表或元组转换成数字,Array(x) 所需的 x参数是一个用逗号隔开的值表。如果不提供参数,则创建一个长度为 0 的数组。

示例代码如下:

>>>np.array((1,2,3,4))  #列表转换为数组
[1 2 3 4] >>>np.array(range(4)) #range对象转换成数组
[0 1 2 3]

注明:带>>>表示输入代码,其余的是print的结果,下文中不再说明

1.2.2常用生成数组的方法

有时候,我们可能需要创建一些比较规则的数组,比如1到100的等差为1的数组,如果使用上面的方法显得太麻烦,这时候,我们可以使用arange(a,b,c)函数,其中a,b,c参数分别对应起始数值和元素差值,但取值时不取到b,示例代码如下:

>>>np.arange(0, 2, 0.5)
[0. 0.5 1. 1.5]

有时不一定知道元素之间精确的差值,而又想获取一个范围内某长度的数组,用linspace(a,b,c)函数就可以完成这个任务,其中a,b,c分别对应起始数值和元素个数,示例代码如下:

>>>np.linspace(0,2,5)
[0. 0.5 1. 1.5 2. ]

logspace函数和linspace函数类似,a,b是起始数值,c指取值个数,假设x是a到b的其中一个值,则元素取值为10^x,也就是说,假设a,b分别取值为0和2时,对应的首尾元素是1(10^0)和100(10^2),示例代码如下:

>>>np.logspace(0,2,10)
[ 1. 1.66810054 2.7825594 4.64158883 7.74263683
12.91549665 21.5443469 35.93813664 59.94842503 100. ]

还有生成随机数数组,范围是0到1,示例如下:

>>>np.random.rand(10)
[0.33234665 0.81082701 0.36265294 0.52809782 0.14785796 0.42038477
0.43077405 0.10493567 0.59562374 0.64912364]

1.2.3生成常用矩阵

一般情况下,使用矩阵可能需要全零全一这类的矩阵作为初始值,类似matlab,python也有这样的函数可以调用,下面分别示例全0,全1,单位矩阵和空矩阵的代码:

>>>np.zeros((3,3))  #全0二维数组
[[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]] >>>np.ones((3,3)) #全1二位数组
[[1. 1. 1.]
[1. 1. 1.]
[1. 1. 1.]] >>>np.identity(3) #单位矩阵
[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]] >>>np.empyt((3,3)) #空数组,只申请空间,元素值不确定,每次运行结果可能不同
[[0.00000000e+000 2.35636847e-310 2.35636847e-310]
[2.35636847e-310 2.35636847e-310 2.35636847e-310]
[2.35636847e-310 2.35636847e-310 3.95252517e-322]]

1.3数组操作

1.3.1获取数组属性

>>>a=np.array(([1,2,3],[4,5,6]))
>>>a
[[1 2 3]
[4 5 6]]
>>>a.ndim #数组的维数
2
>>>a.shape #数组的维度,返回一个元素,相当于行和列
(2, 3)
>>>a.size #数组元素个数
6
>>>a.itemsize #数组中每个元素字节大小
8
>>>a.data #缓冲区,一般不需要用
<memory at 0x2b7990872e48>

1.3.2改变数组大小

当已知一个一维数组时,可以用下面方法改变数组的维度

>>>a=np.array(range(10))
>>>a
[0 1 2 3 4 5 6 7 8 9]
>>>a.shape=2,5 #改成2行5列
>>>a
[[0 1 2 3 4]
[5 6 7 8 9]]
>>>a.shape=5,-1 #改成5行,自动计算列
>>>a
[[0 1]
[2 3]
[4 5]
[6 7]
[8 9]]
>>>b=a.reshape(2,5) #改变a的行列并返回新数组
>>>b
[[0 1 2 3 4]
[5 6 7 8 9]]

1.3.3访问元素

访问元素一般比较简单,代码如下:

>>>a=np.arange(1,10,1).reshape(3,3)
>>>a
[[1 2 3]
[4 5 6]
[7 8 9]]
>>>a[0] #第0行
[1 2 3]
>>>a[:,0] #第0行
[1 4 7]
>>>a[0][0] #第0行0列的元素
1

元素也可以同时访问多个,也可以修改多个,代码如下

>>>a=np.arange(1,10,1)
>>>a
[1 2 3 4 5 6 7 8 9]
>>>index=np.array([1,5])
index
[1 5]
>>>a[index] #查看多个元素值
[2 6]
>>>a[index]=[11,13] #修改多个元素值
>>>a
[ 1 11 3 4 5 13 7 8 9]

这里再介绍一个切片操作,代码如下:

>>>a=np.arange(10)
>>>a
[0 1 2 3 4 5 6 7 8 9]
>>>a[::-1] #反向切片
[9 8 7 6 5 4 3 2 1 0]
>>>a[::2] #隔一个取一个
[0 2 4 6 8]
>>>a[:4] #前4个元素
[0 1 2 3]

1.4数组运算

1.4.1数组与数值的运算

python的数值计算中,基本运算有加、减、乘、除、整除、幂运算、余数等,这些运算在数组中同样适用。数组和数值的运算,是数组中每一位元素分别和数值做计算,本文选用加法和乘法示例,其他的不再一一列举,代码如下:

>>>x=np.array(range(5))
>>>x
[0 1 2 3 4]
>>>x+2
[2 3 4 5 6]
>>>x*2
[0 2 4 6 8]

1.4.2数组和数组的运算

数组间的运算,如c=a*b,表示a中每一位元素乘以b中的每一列元素,下面示例乘法和加法的代码:

>>>a=np.arange(1,4,1)
>>>a
[1 2 3]
>>>b=np.arange(1,10,1).reshape(3,3)
>>>b
[[1 2 3]
[4 5 6]
[7 8 9]]
>>>a*b #乘法运算
[[ 1 4 9]
[ 4 10 18]
[ 7 16 27]]
>>>a+b #加法运算
[[ 2 4 6]
[ 5 7 9]
[ 8 10 12]]

1.4.3向量内积

一维向量求内积非常简单,将对应元素相乘后求和,一维数组也可以和二维数组求内积,内积调用代码为a.dot(b)或np.dot(a,b),示例代码如下:

>>>a=np.array((1,2,3))
>>>b=np.array((3,3,3))
>>>c=np.arange(1,10,1).reshape(3,3)
>>>np.dot(a,b) #向量内积
18
>>>np.dot(c,a) #c中的每一行和a计算内积
[14 32 50]
>>>np.dot(a,c) #a和c中的每一列计算内积
[30 36 42]

多维数组之间也可以求内积,设有多维数组a和多维数组b,若a(如3*2)的列和b(2*4)的行一致,则可计算内积,得到新的数组c(3*4),c的行列分别为a的行和b的列,c中的第i行j列的元素值是a中i行和b中j列的向量做内积求得的。代码如下:

>>>a=np.arange(1,9,1).reshape(2,4)
>>>b=np.arange(1,7,1).reshape(3,2)
>>>b
[[1 2]
[3 4]
[5 6]]
>>>a
[[1 2 3 4]
[5 6 7 8]]
>>>np.dot(b,a)
[[11 14 17 20]
[23 30 37 44]
[35 46 57 68]]

1.4.4数组转置

二维数组转置后行列位置发生变化,一维不变,这里只示例二维转置的效果,代码如下:

>>>a=np.arange(1,10,1).reshape(3,3)
>>>a
[[1 2 3]
[4 5 6]
[7 8 9]]
>>>a.T
[[1 4 7]
[2 5 8]
[3 6 9]]

1.5调用函数

1.5.1计算所有元素值

设x是一个任意维数组,则一般有以下函数可以使用,调用后对每个元素值都做计算

  • np.sin(x)  求正弦值
  • np.cos(x)  求余弦值
  • np.round(x)  四舍五入
  • np.floor(x)  向下取整
  • np.ceil(x)  向上取整

本文示例第一个和最后一个函数

>>>a=np.arange(1,10,1).reshape(3,3)
>>>b=np.sin(a)*10
>>>np.sin(a) #a求正弦值
[[ 0.84147098 0.90929743 0.14112001]
[-0.7568025 -0.95892427 -0.2794155 ]
[ 0.6569866 0.98935825 0.41211849]]
>>>b
[[ 8.41470985 9.09297427 1.41120008]
[-7.56802495 -9.58924275 -2.79415498]
[ 6.56986599 9.89358247 4.12118485]]
>>>np.ceil(b) #b向上取整
[[ 9. 10. 2.]
[-7. -9. -2.]
[ 7. 10. 5.]]

1.5.2不同维度上的元素进行计算

介绍函数前,先说明几个变量,x表示数组,axis=0表示纵向或者说每列,axis=1表示横向或者每行。以下列举一些用法类似的函数,并选择其中一个函数用代码示例

  • np.sum  #求和
  • np.mean  #求算术平均值
  • np.average  #求平均值,如果参数加上权重则为加权平均值
  • np.max  #求最大值
  • np.std  #求标准差
  • np.var  #求方差
  • np.sort  #排序,不标明axis的值时,默认axis为1
>>>a=np.array(([1,2,3],[4,5,6]))
>>>np.sum(a) #全部元素和
21
>>>np.sum(a,0) #纵向求和
[5 7 9]
>>>np.sum(a,axis=1) #横向求和
[6 15]

1.6广播

ufunc是一种能对数组的每个元素进行操作的函数,如前面提到的np.sin等函数。当我们使用ufunc函数对两个数组进行计算时,ufunc函数会对这两个数组的对应元素进行计算,因此它要求这两个数组有相同的大小(shape相同)。如果两个数组的shape不同的话,会进行如下的广播(broadcasting)处理:

  1. 让所有输入数组都向其中shape最长的数组看齐,shape中不足的部分都通过在前面加1补齐
  2. 输出数组的shape是输入数组shape的各个轴上的最大值 (数组的维数称为秩,秩是描述轴的数量,轴表示一个线性数组)
  3. 如果输入数组的某个轴和输出数组的对应轴的长度相同或者其长度为1时,这个数组能够用来计算,否则出错
  4. 当输入数组的某个轴的长度为1时,沿着此轴运算时都用此轴上的第一组值

上述4条规则理解起来可能比较费劲,让我们来看一个实际的例子。

>>>a=np.arange(0, 60, 10).reshape(-1, 1)
>>>b=np.arange(0,6)
>>>a
[[ 0]
[10]
[20]
[30]
[40]
[50]]
>>>b
[0 1 2 3 4 5]
>>>a+b #广播
[[ 0 1 2 3 4 5]
[10 11 12 13 14 15]
[20 21 22 23 24 25]
[30 31 32 33 34 35]
[40 41 42 43 44 45]
[50 51 52 53 54 55]]
>>>a*b
[[ 0 0 0 0 0 0]
[ 0 10 20 30 40 50]
[ 0 20 40 60 80 100]
[ 0 30 60 90 120 150]
[ 0 40 80 120 160 200]
[ 0 50 100 150 200 250]]

1 Numpy-科学计算的更多相关文章

  1. python安装numpy科学计算模块

    解决两个问题: (1)Import Error: No module named numpy (2)Python version 2.7 required, which was not found i ...

  2. numpy科学计算库的基础用法,完美抽象多维数组(原创)

    #起别名避免重名 import numpy as np #小技巧:print从外往内看==shape从左往右看 if __name__ == "__main__": print(' ...

  3. Python的工具包[0] -> numpy科学计算 -> numpy 库及使用总结

    NumPy 目录 关于 numpy numpy 库 numpy 基本操作 numpy 复制操作 numpy 计算 numpy 常用函数 1 关于numpy / About numpy NumPy系统是 ...

  4. Numpy科学计算

    NumPy介绍   NumPy(Numerical Python)是一个开源的Python科学计算库,用于快速处理任意维度的数组. NumPy支持常见的数组和矩阵操作.对于同样的数值计算任务,使用Nu ...

  5. Numpy科学计算从放弃到入门

    目录 一.什么是Numpy ndarray对象 相关文档 二.如何创建数组 三.如何访问数组 下标索引 切片索引 布尔型索引 整数索引 方形索引 四.如何做算数运算 五.如何使用统计函数 六.数组转置 ...

  6. python numpy 科学计算通用函数汇总

    import numpy as np #一元函数 #绝对值计算 a = -1b = abs(a)print(b)输出: 1 #开平方计算 a = 4b = np.sqrt(a)print(b)输出: ...

  7. Numpy科学计算工具

    Numpy初探 Numpy基础数据结构 Numpy数组是一个多维数组,称为ndarray.其由两部分组成: 实际的数据 描述这些数据的原数据 导入该库: import numpy as np 多维数组 ...

  8. python numpy科学计算和数据分析的基础包

    import numpy as np #创建ndarray# data1 = [6, 5, 7, 1, 3]# arrl = np.array(data1)# print(arrl)#多维列表创建nd ...

  9. ubuntu安装Python环境以及科学计算环境

    参考:http://blog.csdn.net/a1311543690/article/details/ 1.sudo apt-get install python-pip pip是Python的一个 ...

  10. python学习--大数据与科学计算第三方库简介

    大数据与科学计算  库名称 简介 pycuda/opencl GPU高性能并发计算 Pandas python实现的类似R语言的数据统计.分析平台.基于NumPy和Matplotlib开发的,主要用于 ...

随机推荐

  1. XBMC源代码简析 5:视频播放器(dvdplayer)-解复用器(以ffmpeg为例)

    XBMC分析系列文章: XBMC源代码分析 1:整体结构以及编译方法 XBMC源代码分析 2:Addons(皮肤Skin) XBMC源代码分析 3:核心部分(core)-综述 XBMC源代码分析 4: ...

  2. MinerStoreThread.java 存储线程

    MinerStoreThread.java 存储线程 package com.iteye.injavawetrust.miner; import java.util.HashMap; import j ...

  3. 9.1、Libgdx的输入处理的配置和查询

    (官网:www.libgdx.cn) 有时判断是否支持输入设备是必要的.通常你的游戏不需要支持所有的输入设备.比如你可能不需要加速度计或者罗盘.这时我们需要禁用这些设备保持电量.接下来将教你怎样做. ...

  4. 关于对数组和指针的测试与分析OC

    前言: 这个笔试题想必很多小伙伴都很面熟把,差不多10个人有7个人不会做这道笔试题,或许有知道答案的,但是仅仅知道答案,心里还是一头雾水.如果你真的不会那就请认真看完本文学习一下吧! 错误想法: 有的 ...

  5. 《java入门第一季》之面向对象面试题(继承中构造方法的关系)

    /* 继承中构造方法的关系 A:子类中所有(子类的有参和无参)的构造方法(默认都会访问父类)中(空参数)的构造方法,默认访问父类空参数构造,不默认访问有参数构造 B:为什么呢? 因为子类会继承父类中的 ...

  6. com.android.ddmlib.SyncException: Read-only file system

    通过eclipse运行Android 程序到测试机时候 控制台出现如下错误: [2014-02-13 15:06:03 - MPlay] Failed to install MPlay.apk on ...

  7. jsp中的tag与tld

    转载自: http://www.cnblogs.com/fanzi2009/archive/2010/04/08/1707888.html 在jsp文件中,可以引用tag和tld文件.  1.对于ta ...

  8. 关于iOS socket的讲解介绍

    socket(套接字)是通信的基石,是支持TCP/IP协议的网络通信的基本操作单元,包含进行网络通信必须的五种信息:连接使用的协议,本地主机的IP地址,本地进程的协议端口,远地主机的IP地址,远地进程 ...

  9. OpenCV 透视变换实例

    参考文献: http://www.cnblogs.com/self-control/archive/2013/01/18/2867022.html http://opencv-code.com/tut ...

  10. Leetcode_232_Implement Queue using Stacks

    本文是在学习中的总结,欢迎转载但请注明出处:http://blog.csdn.net/pistolove/article/details/48392363 Implement the followin ...