[论文解读]CNN网络可视化——Visualizing and Understanding Convolutional Networks
概述
- 反卷积神经网络(Deconvolutional Network)

- 反池化:
- 反激活:
- 反卷积:
卷积网络就是网络利用学习到的卷积核对上一层的特征进行卷积得到本层的feature map。而反卷积就是这个过程的逆过程,用本层的feature map与转置后的卷积核进行卷积,得到上一层的特征。
2. 可视化结果
- 特征曾学到了什么?
从上图可是化的结果中,我们可以看出,不同层的layer学习到的是不同的特征。对于Layer1和Layer2来说,网络学习到的基本上是边缘、颜色等图像中底层的特征;Layer3开始可以学习到一些复杂些的特征,类似网格纹理等;Layer4可以学习到更高维的特征,比如说狗头、鸟类的脚、同心环等;Layer5则是更加具有辨别性的关键特征。
- 特征层是如何随训练演化的?
上图展示了网络中各个特征层是如何随着训练步数而进化的。各子图中每列分别代表训练了[1,2,5,10,20,30,40,64]个epoch。可以看出,对于较低的特征层来说,它们的特征很快就学到并稳定下来了。而对于像Layer5这样比较高维的特征层来说,则是在学习了30个epoch后才学习到了比较有辨别性的关键特征。说明训练步数的增加还是能够比较好地提升网络的学习和收敛能力的。
- 可视化网络如何提升网络性能?
作者可视化了原版AlexNet各特征层,发现了对于AlexNet来说,第一层的卷积核大部分是高频和低频的特征,而对中频段图像特征整提取得不好。同时,第二层特征的可视化的结果显示出了由于第一层卷积步长太大(4)导致的“ 混叠伪影”。因此作者对AlexNet的改善包括:将第一层的卷积核从11x11减小为7x7;将卷积步长减小为2,而不是4。经过作者改善后的模型在ImageNet2012的分类误差均比AlexNet有提高。
- 消融分析(Ablation Analysis)
作者用消融分析对三张图进行了分析,发现当遮挡掉图片中的关键部位后,相关卷积核卷出来的特征激励会大幅变小(上图第二列)。同时发现遮挡掉关键部位后,网络很容易将图片放入错误的分类中去,而遮挡一些背景部位则不会(第五列)。
这篇文章是CNN网络可视化相关研究非常重要的一篇文章,在这之后的许多研究工作都基于了这篇文章的成果。所以说是研究CNN 网络可视化的必读文献也不为过。
参考资料:
1. http://blog.csdn.net/hjimce/article/details/50544370
2. Zeiler, M. D. and Fergus, R. Visualizing and understanding convolutional networks. In ECCV, 2014.
[论文解读]CNN网络可视化——Visualizing and Understanding Convolutional Networks的更多相关文章
- 深度学习论文翻译解析(十):Visualizing and Understanding Convolutional Networks
论文标题:Visualizing and Understanding Convolutional Networks 标题翻译:可视化和理解卷积网络 论文作者:Matthew D. Zeiler Ro ...
- Visualizing and Understanding Convolutional Networks论文复现笔记
目录 Visualizing and Understanding Convolutional Networks 论文复现笔记 Abstract Introduction Approach Visual ...
- 0 - Visualizing and Understanding Convolutional Networks(阅读翻译)
卷积神经网络的可视化理解(Visualizing and Understanding Convolutional Networks) 摘要(Abstract) 近来,大型的卷积神经网络模型在Image ...
- 【网络结构可视化】Visualizing and Understanding Convolutional Networks(ZF-Net) 论文解析
目录 0. 论文地址 1. 概述 2. 可视化结构 2.1 Unpooling 2.2 Rectification: 2.3 Filtering: 3. Feature Visualization 4 ...
- 论文笔记:Visualizing and Understanding Convolutional Networks
2014 ECCV 纽约大学 Matthew D. Zeiler, Rob Fergus 简单介绍(What) 提出了一种可视化的技巧,能够看到CNN中间层的特征功能和分类操作. 通过对这些可视化信息 ...
- 深度学习研究理解5:Visualizing and Understanding Convolutional Networks(转)
Visualizing and understandingConvolutional Networks 本文是Matthew D.Zeiler 和Rob Fergus于(纽约大学)13年撰写的论文,主 ...
- Visualizing and Understanding Convolutional Networks
前言:研究卷积神经网络,把阅读到的一些文献经典的部分翻译一下,写成博客,代码后续给出,不足之处还请大家指出. 本文来自:tony-tan.com Github:github.com/Tony-Tan ...
- 论文解读2——Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
背景 用ConvNet方法解决图像分类.检测问题成为热潮,但这些方法都需要先把图片resize到固定的w*h,再丢进网络里,图片经过resize可能会丢失一些信息.论文作者发明了SPP pooling ...
- ZFNet: Visualizing and Understanding Convolutional Networks
目录 论文结构 反卷积 ZFnet的创新点主要是在信号的"恢复"上面,什么样的输入会导致类似的输出,通过这个我们可以了解神经元对输入的敏感程度,比如这个神经元对图片的某一个位置很敏 ...
随机推荐
- android EventBus详解(二)
上一节讲了EventBus的使用方法和实现的原理,下面说一下EventBus的Poster只对粘滞事件和invokeSubscriber()方法是怎么发送的. Subscribe流程 我们继续来看Ev ...
- ELF 动态链接 so的动态符号表(.dynsym)
静态链接中有一个专门的段叫符号表 -- ".symtab"(Symbol Table), 里面保存了所有关于该目标文件的符号的定义和引用. 动态链接中同样有一个段叫 动态符号表 - ...
- Xamarin引用第三方包错误解决方法
http://www.cnblogs.com/ThenDog/p/7623720.html
- CSS3实现多种背景效果
灵活的背景定位 实现效果: 将背景图定位到距离容器底边 10px 且距离右边 20px 的位置. background-position 方案 实现代码: <div>海盗密码</di ...
- php namespace与use
实验代码 ~/aa.php ~/bb.php 1.命名空间与文件加载的关系 本人在命名空间与文件加载上一直有一个误区,用了命名空间文件不用加载了? 实验1:去掉requre语句 可以看到就算使用命名空 ...
- vfd折腾(一)
从一开始驱动一块翻出来的液晶显示屏就想做一个电子时钟,偶然翻到了vfd(Vacuum Fluorescent Display的缩写,意为真空荧光显示屏). 此后就走上了不归路
- log4j2.xml全配置文件
可以参考如下配置 <?xml version="1.0" encoding="UTF-8"?> <!--日志级别以及优先级排序: OFF &g ...
- ios WKWebView 与 JS 交互实战技巧
一.WKWebView 由于Xcode8发布之后,编译器开始不支持iOS 7了,这样我们的app也改为最低支持iOS 8.0,既然需要与web交互,那自然也就选择使用了 iOS 8.0之后 才推出的新 ...
- 佛祖镇楼,BUG避易
def FZZL(): print(" _ooOoo_ ") print(" o8888888o ") print(" 88 . 88 ") ...
- flume原理
1. flume简介 flume 作为 cloudera 开发的实时日志收集系统,受到了业界的认可与广泛应用.Flume 初始的发行版本目前被统称为 Flume OG(original generat ...