戳更多文章:

1-Flink入门

2-本地环境搭建&构建第一个Flink应用

3-DataSet API

4-DataSteam API

5-集群部署

6-分布式缓存

7-重启策略

8-Flink中的窗口

9-Flink中的Time

Flink时间戳和水印

Broadcast广播变量

FlinkTable&SQL

Flink实战项目实时热销排行

Flink写入RedisSink

17-Flink消费Kafka写入Mysql

戳原文:

1-Flink入门

2-本地环境搭建&构建第一个Flink应用

3-DataSet API
4-DataSteam API

5-集群部署

6-分布式缓存

7-重启策略

8-Flink中的窗口

9-Flink中的Time

窗口

窗口类型

  1. flink支持两种划分窗口的方式(time和count) 如果根据时间划分窗口,那么它就是一个time-window 如果根据数据划分窗口,那么它就是一个count-window

  2. flink支持窗口的两个重要属性(size和interval)

  • 如果size=interval,那么就会形成tumbling-window(无重叠数据)
  • 如果size>interval,那么就会形成sliding-window(有重叠数据)
  • 如果size<interval,那么这种窗口将会丢失数据。比如每5秒钟,统计过去3秒的通过路口汽车的数据,将会漏掉2秒钟的数据。
  1. 通过组合可以得出四种基本窗口:
  • time-tumbling-window 无重叠数据的时间窗口,设置方式举例:timeWindow(Time.seconds(5))

  • time-sliding-window 有重叠数据的时间窗口,设置方式举例:timeWindow(Time.seconds(5), Time.seconds(3))

  • count-tumbling-window无重叠数据的数量窗口,设置方式举例:countWindow(5)
  • count-sliding-window 有重叠数据的数量窗口,设置方式举例:countWindow(5,3)
  1. flink支持在stream上的通过key去区分多个窗口

窗口的实现方式

上一张经典图:

 
image
  • Tumbling Time Window

假如我们需要统计每一分钟中用户购买的商品的总数,需要将用户的行为事件按每一分钟进行切分,这种切分被成为翻滚时间窗口(Tumbling Time Window)。翻滚窗口能将数据流切分成不重叠的窗口,每一个事件只能属于一个窗口。

// 用户id和购买数量 stream
val counts: DataStream[(Int, Int)] = ...
val tumblingCnts: DataStream[(Int, Int)] = counts
// 用userId分组
.keyBy(0)
// 1分钟的翻滚窗口宽度
.timeWindow(Time.minutes(1))
// 计算购买数量
.sum(1)
  • Sliding Time Window

我们可以每30秒计算一次最近一分钟用户购买的商品总数。这种窗口我们称为滑动时间窗口(Sliding Time Window)。在滑窗中,一个元素可以对应多个窗口。通过使用 DataStream API,我们可以这样实现:

val slidingCnts: DataStream[(Int, Int)] = buyCnts
.keyBy(0)
.timeWindow(Time.minutes(1), Time.seconds(30))
.sum(1)
  • Tumbling Count Window

当我们想要每100个用户购买行为事件统计购买总数,那么每当窗口中填满100个元素了,就会对窗口进行计算,这种窗口我们称之为翻滚计数窗口(Tumbling Count Window),上图所示窗口大小为3个。通过使用 DataStream API,我们可以这样实现:

// Stream of (userId, buyCnts)
val buyCnts: DataStream[(Int, Int)] = ... val tumblingCnts: DataStream[(Int, Int)] = buyCnts
// key stream by sensorId
.keyBy(0)
// tumbling count window of 100 elements size
.countWindow(100)
// compute the buyCnt sum
.sum(1)
  • Session Window

在这种用户交互事件流中,我们首先想到的是将事件聚合到会话窗口中(一段用户持续活跃的周期),由非活跃的间隙分隔开。如上图所示,就是需要计算每个用户在活跃期间总共购买的商品数量,如果用户30秒没有活动则视为会话断开(假设raw data stream是单个用户的购买行为流)。Session Window 的示例代码如下:

// Stream of (userId, buyCnts)
val buyCnts: DataStream[(Int, Int)] = ... val sessionCnts: DataStream[(Int, Int)] = vehicleCnts
.keyBy(0)
// session window based on a 30 seconds session gap interval
.window(ProcessingTimeSessionWindows.withGap(Time.seconds(30)))
.sum(1)

一般而言,window 是在无限的流上定义了一个有限的元素集合。这个集合可以是基于时间的,元素个数的,时间和个数结合的,会话间隙的,或者是自定义的。Flink 的 DataStream API 提供了简洁的算子来满足常用的窗口操作,同时提供了通用的窗口机制来允许用户自己定义窗口分配逻辑。

公众号推荐

  • 全网唯一一个从0开始帮助Java开发者转做大数据领域的公众号,BAT团队集体开发~
  • 海量【java和大数据的面试题+视频资料】整理在公众号,关注后可以下载~
  • 更多大数据技术欢迎和作者一起探讨~
 
image

8-Flink中的窗口的更多相关文章

  1. Flink中的Time

    戳更多文章: 1-Flink入门 2-本地环境搭建&构建第一个Flink应用 3-DataSet API 4-DataSteam API 5-集群部署 6-分布式缓存 7-重启策略 8-Fli ...

  2. Flink学习(二)Flink中的时间

    摘自Apache Flink官网 最早的streaming 架构是storm的lambda架构 分为三个layer batch layer serving layer speed layer 一.在s ...

  3. 《从0到1学习Flink》—— Flink 中几种 Time 详解

    前言 Flink 在流程序中支持不同的 Time 概念,就比如有 Processing Time.Event Time 和 Ingestion Time. 下面我们一起来看看这几个 Time: Pro ...

  4. 《从0到1学习Flink》—— 介绍Flink中的Stream Windows

    前言 目前有许多数据分析的场景从批处理到流处理的演变, 虽然可以将批处理作为流处理的特殊情况来处理,但是分析无穷集的流数据通常需要思维方式的转变并且具有其自己的术语(例如,"windowin ...

  5. Flink中的CEP复杂事件处理 (源码分析)

    其实CEP复杂事件处理,简单来说你可以用通过类似正则表达式的方式去表示你的逻辑,表现能力非常的强,用过的人都知道 开篇先偷一张图,整体了解Flink中的CEP中的  一种重要的图  NFA非确定有限状 ...

  6. Flink中Idle停滞流机制(源码分析)

    前几天在社区群上,有人问了一个问题 既然上游最小水印会决定窗口触发,那如果我上游其中一条流突然没有了数据,我的窗口还会继续触发吗? 看到这个问题,我蒙了???? 对哈,因为我是选择上游所有流中水印最小 ...

  7. 如何在 Apache Flink 中使用 Python API?

    本文根据 Apache Flink 系列直播课程整理而成,由 Apache Flink PMC,阿里巴巴高级技术专家 孙金城 分享.重点为大家介绍 Flink Python API 的现状及未来规划, ...

  8. 老板让阿粉学习 flink 中的 Watermark,现在他出教程了

    1 前言 在时间 Time 那一篇中,介绍了三种时间概念 Event.Ingestin 和 Process, 其中还简单介绍了乱序 Event Time 事件和它的解决方案 Watermark 水位线 ...

  9. 「Flink」Flink中的时间类型

    Flink中的时间类型和窗口是非常重要概念,是学习Flink必须要掌握的两个知识点. Flink中的时间类型 时间类型介绍 Flink流式处理中支持不同类型的时间.分为以下几种: 处理时间 Flink ...

随机推荐

  1. CyclicBarrier简介

    CyclicBarrier简介 CyclicBarrier和CountDownLatch不同,是当await的数量达到了设定的数量之后,才继续往下执行 CyclicBarrier数的是调用了Cycli ...

  2. HEOI2018——welcome to NOI2018

    我不得不和烈士和小丑走在同一道路上,  万人都要将火熄灭,  我一人独将此火高高举起,  我借此火得度一生的茫茫黑夜. ——海子 弹指一瞬间,翘首以盼的HEOI2018就来了. 我,一个滑稽的小丑,带 ...

  3. ArcGIS API for JavaScript 入门教程[2] 授人以渔

    这篇仍然不讲怎么做,但是我要告诉你如何获取资源. 目录:https://www.cnblogs.com/onsummer/p/9080204.html 转载注明出处,博客园/CSDN/B站:秋意正寒. ...

  4. Python3 ——斐波那契数列(经典)

    刚刚学习了 斐波那契数列,整理一下思路,写个博文给未来的学弟学妹参考一下,希望能够帮助到他们 永远爱你们的 ----新宝宝 经历过简单的学习之后,写出一个比较简单的代码,斐波那契数列:具体程序如下: ...

  5. 从壹开始前后端分离 41 || Nginx+Github+PM2 快速部署项目(一)

    前言 哈喽大家周一好!今天是农历腊月二十三,小年开始,恭祝大家新年快乐(哈哈你五福了么

  6. python接口自动化(十五)--参数关联接口(详解)

    简介 我们用自动化新建任务之后,要想接着对这个新建任务操作,那就需要用参数关联了,新建任务之后会有一个任务的Jenkins-Crumb,获取到这个Jenkins-Crumb,就可以通过传这个任务Jen ...

  7. 在ASP.NET Core中使用EPPlus导入出Excel文件

    这篇文章说明了如何使用EPPlus在ASP.NET Core中导入和导出.xls/.xlsx文件(Excel).在考虑使用.NET处理excel时,我们总是寻找第三方库或组件.使用Open Offic ...

  8. 我不是bug神(JVM问题排查)

    Story background 回望2018年12月,这也许是程序员们日夜不得安宁的日子,皆因各种前线的系统使用者都需要冲业绩等原因,往往在这个时候会向系统同时写入海量的数据,当我们的应用或者数据库 ...

  9. [深度应用]·实战掌握Dlib人脸识别开发教程

    [深度应用]·实战掌握Dlib人脸识别开发教程 个人网站--> http://www.yansongsong.cn/ 项目GitHub地址--> https://github.com/xi ...

  10. COW奶牛!Copy On Write机制了解一下

    前言 只有光头才能变强 在读<Redis设计与实现>关于哈希表扩容的时候,发现这么一段话: 执行BGSAVE命令或者BGREWRITEAOF命令的过程中,Redis需要创建当前服务器进程的 ...