Codeforces Round #106 (Div. 2) D. Coloring Brackets 区间dp
题目链接:
http://codeforces.com/problemset/problem/149/D
D. Coloring Brackets
time limit per test2 secondsmemory limit per test256 megabytes
#### 问题描述
> Once Petya read a problem about a bracket sequence. He gave it much thought but didn't find a solution. Today you will face it.
>
> You are given string s. It represents a correct bracket sequence. A correct bracket sequence is the sequence of opening ("(") and closing (")") brackets, such that it is possible to obtain a correct mathematical expression from it, inserting numbers and operators between the brackets. For example, such sequences as "(())()" and "()" are correct bracket sequences and such sequences as ")()" and "(()" are not.
>
> In a correct bracket sequence each bracket corresponds to the matching bracket (an opening bracket corresponds to the matching closing bracket and vice versa). For example, in a bracket sequence shown of the figure below, the third bracket corresponds to the matching sixth one and the fifth bracket corresponds to the fourth one.
>
>
> You are allowed to color some brackets in the bracket sequence so as all three conditions are fulfilled:
>
> Each bracket is either not colored any color, or is colored red, or is colored blue.
> For any pair of matching brackets exactly one of them is colored. In other words, for any bracket the following is true: either it or the matching bracket that corresponds to it is colored.
> No two neighboring colored brackets have the same color.
> Find the number of different ways to color the bracket sequence. The ways should meet the above-given conditions. Two ways of coloring are considered different if they differ in the color of at least one bracket. As the result can be quite large, print it modulo 1000000007 (109 + 7).
#### 输入
> The first line contains the single string s (2 ≤ |s| ≤ 700) which represents a correct bracket sequence.
#### 输出
> Print the only number — the number of ways to color the bracket sequence that meet the above given conditions modulo 1000000007 (109 + 7).
####样例输入
> (()())
####样例输出
> 40
## 题意
> 每对括号必须满足一边染成红色或蓝色,另一边不染色,且相邻的两个括号颜色不同。
题解
之前的一种思路是dp[l][r][s1][s2]代表最左边的括号的状态为s1,s2但是,这种是错的额!因为你看不到r右边的限制了!!!!
贴个错误代码:
#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<ctime>
#include<vector>
#include<cstdio>
#include<string>
#include<bitset>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
using namespace std;
#define X first
#define Y second
#define mkp make_pair
#define lson (o<<1)
#define rson ((o<<1)|1)
#define mid (l+(r-l)/2)
#define sz() size()
#define pb(v) push_back(v)
#define all(o) (o).begin(),(o).end()
#define clr(a,v) memset(a,v,sizeof(a))
#define bug(a) cout<<#a<<" = "<<a<<endl
#define rep(i,a,b) for(int i=a;i<(b);i++)
#define scf scanf
#define prf printf
typedef long long LL;
typedef vector<int> VI;
typedef pair<int,int> PII;
typedef vector<pair<int,int> > VPII;
const int INF=0x3f3f3f3f;
const LL INFL=0x3f3f3f3f3f3f3f3fLL;
const double eps=1e-8;
const double PI = acos(-1.0);
//start----------------------------------------------------------------------
const int maxn=777;
const int mod=1e9+7;
LL dp[maxn][maxn][3][3];
char str[maxn];
int rig[maxn];
int n;
LL dfs(int l,int r,int s1,int s2) {
if(l>=r) return 0;
if(l+1==r&&(s1==0&&s2>0||s1>0||s2==0)) return 1;
if(dp[l][r][s1][s2]>=0) return dp[l][r][s1][s2];
LL &res=dp[l][r][s1][s2]=0;
int ll=l,rr=rig[l];
LL cntl=0,cntr=0;
if(s1==0) {
if(ll+1<rr-1) {
cntl+=dfs(ll+1,rr-1,1,0);
cntl+=dfs(ll+1,rr-1,2,0);
cntl+=dfs(ll+1,rr-1,0,3-s2);
} else {
cntl=1;
}
cntl%=mod;
if(rr+1>r) {
cntr=1;
} else {
cntr+=dfs(rr+1,r,0,1);
cntr+=dfs(rr+1,r,0,2);
cntr+=dfs(rr+1,r,3-s2,0);
}
cntr%=mod;
res+=cntl*cntr;
res%=mod;
} else {
if(ll+1<rr-1) {
cntl+=dfs(ll+1,rr-1,3-s1,0);
cntl+=dfs(ll+1,rr-1,0,1);
cntl+=dfs(ll+1,rr-1,0,2);
} else {
cntl=1;
}
cntl%=mod;
if(rr+1>r) {
cntr=1;
} else {
cntr+=dfs(rr+1,r,0,1);
cntr+=dfs(rr+1,r,0,2);
cntr+=dfs(rr+1,r,1,0);
cntr+=dfs(rr+1,r,2,0);
}
cntr%=mod;
res+=cntl*cntr;
res%=mod;
}
return res;
}
int main() {
scf("%s",str+1);
n=strlen(str+1);
stack<int> mst;
clr(dp,-1);
clr(rig,-1);
for(int i=1; i<=n; i++) {
if(str[i]==')') {
rig[mst.top()]=i;
mst.pop();
} else {
mst.push(i);
}
}
// for(int i=1;i<=n;i++){
// prf("(%d,%d)\n",i,rig[i]);
// }
LL ans=dfs(1,n,0,1)+dfs(1,n,0,2)+dfs(1,n,1,0)+dfs(1,n,2,0);
bug(dp[1][n][0][1]);
bug(dp[1][n][0][2]);
bug(dp[1][n][1][0]);
bug(dp[1][n][2][0]);
bug(dp[2][5][2][0]);
prf("%I64d\n",ans);
return 0;
}
//end-----------------------------------------------------------------------
/*
(()())
*/
正确的表示应该是dp[l][r][s1][s2]代表l左边和r右边的限制!!!
#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<ctime>
#include<vector>
#include<cstdio>
#include<string>
#include<bitset>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
using namespace std;
#define X first
#define Y second
#define mkp make_pair
#define lson (o<<1)
#define rson ((o<<1)|1)
#define mid (l+(r-l)/2)
#define sz() size()
#define pb(v) push_back(v)
#define all(o) (o).begin(),(o).end()
#define clr(a,v) memset(a,v,sizeof(a))
#define bug(a) cout<<#a<<" = "<<a<<endl
#define rep(i,a,b) for(int i=a;i<(b);i++)
#define scf scanf
#define prf printf
typedef long long LL;
typedef vector<int> VI;
typedef pair<int,int> PII;
typedef vector<pair<int,int> > VPII;
const int INF=0x3f3f3f3f;
const LL INFL=0x3f3f3f3f3f3f3f3fLL;
const double eps=1e-8;
const double PI = acos(-1.0);
//start----------------------------------------------------------------------
const int maxn=777;
const int mod=1e9+7;
LL dp[maxn][maxn][3][3];
char str[maxn];
int rig[maxn];
int n;
LL dfs(int l,int r,int s1,int s2) {
if(l>r) return 1;
if(dp[l][r][s1][s2]>=0) return dp[l][r][s1][s2];
LL &res=dp[l][r][s1][s2]=0;
int ll=l,rr=rig[l];
if(rr==r){
if(s1==0){
if(s2==0){
res+=dfs(ll+1,rr-1,0,1);
res+=dfs(ll+1,rr-1,0,2);
res+=dfs(ll+1,rr-1,1,0);
res+=dfs(ll+1,rr-1,2,0);
res%=mod;
}else{
res+=dfs(ll+1,rr-1,0,3-s2);
res+=dfs(ll+1,rr-1,1,0);
res+=dfs(ll+1,rr-1,2,0);
res%=mod;
}
}else{
if(s2==0){
res+=dfs(ll+1,rr-1,0,1);
res+=dfs(ll+1,rr-1,0,2);
res+=dfs(ll+1,rr-1,3-s1,0);
res%=mod;
}else{
res+=dfs(ll+1,rr-1,0,3-s2);
res+=dfs(ll+1,rr-1,3-s1,0);
res%=mod;
}
}
}else{
if(s1==0){
res=(res+dfs(ll+1,rr-1,0,1)*dfs(rr+1,r,1,s2)%mod)%mod;
res=(res+dfs(ll+1,rr-1,0,2)*dfs(rr+1,r,2,s2)%mod)%mod;
res=(res+dfs(ll+1,rr-1,1,0)*dfs(rr+1,r,0,s2)%mod)%mod;
res=(res+dfs(ll+1,rr-1,2,0)*dfs(rr+1,r,0,s2)%mod)%mod;
}else{
res=(res+dfs(ll+1,rr-1,0,1)*dfs(rr+1,r,1,s2)%mod)%mod;
res=(res+dfs(ll+1,rr-1,0,2)*dfs(rr+1,r,2,s2)%mod)%mod;
res=(res+dfs(ll+1,rr-1,3-s1,0)*dfs(rr+1,r,0,s2)%mod)%mod;
}
}
return res;
}
int main() {
scf("%s",str+1);
n=strlen(str+1);
stack<int> mst;
clr(dp,-1);
clr(rig,-1);
for(int i=1; i<=n; i++) {
if(str[i]==')') {
rig[mst.top()]=i;
mst.pop();
} else {
mst.push(i);
}
}
LL ans=dfs(1,n,0,0);
prf("%I64d\n",ans);
return 0;
}
//end-----------------------------------------------------------------------
/*
(()())
*/
短一点的代码:
#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<ctime>
#include<vector>
#include<cstdio>
#include<string>
#include<bitset>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
using namespace std;
#define X first
#define Y second
#define mkp make_pair
#define lson (o<<1)
#define rson ((o<<1)|1)
#define mid (l+(r-l)/2)
#define sz() size()
#define pb(v) push_back(v)
#define all(o) (o).begin(),(o).end()
#define clr(a,v) memset(a,v,sizeof(a))
#define bug(a) cout<<#a<<" = "<<a<<endl
#define rep(i,a,b) for(int i=a;i<(b);i++)
#define scf scanf
#define prf printf
typedef long long LL;
typedef vector<int> VI;
typedef pair<int,int> PII;
typedef vector<pair<int,int> > VPII;
const int INF=0x3f3f3f3f;
const LL INFL=0x3f3f3f3f3f3f3f3fLL;
const double eps=1e-8;
const double PI = acos(-1.0);
//start----------------------------------------------------------------------
const int maxn=777;
const int mod=1e9+7;
LL dp[maxn][maxn][3][3];
char str[maxn];
int rig[maxn];
int n;
LL dfs(int l,int r,int s1,int s2) {
if(l>r) return 1;
if(dp[l][r][s1][s2]>=0) return dp[l][r][s1][s2];
LL &res=dp[l][r][s1][s2]=0;
int ll=l,rr=rig[l];
for(int i=1;i<=2;i++){
//left
if(i!=s1) res=(res+dfs(ll+1,rr-1,i,0)*dfs(rr+1,r,0,s2)%mod)%mod;
//right
if(rr<r||i!=s2) res=(res+dfs(ll+1,rr-1,0,i)*dfs(rr+1,r,i,s2)%mod)%mod;
}
return res;
}
int main() {
scf("%s",str+1);
n=strlen(str+1);
stack<int> mst;
clr(dp,-1);
clr(rig,-1);
for(int i=1; i<=n; i++) {
if(str[i]==')') {
rig[mst.top()]=i;
mst.pop();
} else {
mst.push(i);
}
}
LL ans=dfs(1,n,0,0);
prf("%I64d\n",ans);
return 0;
}
//end-----------------------------------------------------------------------
/*
(()())
*/
Codeforces Round #106 (Div. 2) D. Coloring Brackets 区间dp的更多相关文章
- Codeforces Round #106 (Div. 2) D. Coloring Brackets —— 区间DP
题目链接:https://vjudge.net/problem/CodeForces-149D D. Coloring Brackets time limit per test 2 seconds m ...
- Codeforces Round #369 (Div. 2) C. Coloring Trees(dp)
Coloring Trees Problem Description: ZS the Coder and Chris the Baboon has arrived at Udayland! They ...
- Codeforces Round #369 (Div. 2) C. Coloring Trees (DP)
C. Coloring Trees time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...
- Codeforces Round #369 (Div. 2) C. Coloring Trees(简单dp)
题目:https://codeforces.com/problemset/problem/711/C 题意:给你n,m,k,代表n个数的序列,有m种颜色可以涂,0代表未涂颜色,其他代表已经涂好了,连着 ...
- Codeforces Round #336 (Div. 2) D. Zuma(区间DP)
题目链接:https://codeforces.com/contest/608/problem/D 题意:给出n个宝石的颜色ci,现在有一个操作,就是子串的颜色是回文串的区间可以通过一次操作消去,问最 ...
- Codeforces Round #367 (Div. 2) C. Hard problem(DP)
Hard problem 题目链接: http://codeforces.com/contest/706/problem/C Description Vasiliy is fond of solvin ...
- codeforces 149D Coloring Brackets (区间DP + dfs)
题目链接: codeforces 149D Coloring Brackets 题目描述: 给一个合法的括号串,然后问这串括号有多少种涂色方案,当然啦!涂色是有限制的. 1,每个括号只有三种选择:涂红 ...
- CF149D. Coloring Brackets[区间DP !]
题意:给括号匹配涂色,红色蓝色或不涂,要求见原题,求方案数 区间DP 用栈先处理匹配 f[i][j][0/1/2][0/1/2]表示i到ji涂色和j涂色的方案数 l和r匹配的话,转移到(l+1,r-1 ...
- codeforce 149D Coloring Brackets 区间DP
题目链接:http://codeforces.com/problemset/problem/149/D 继续区间DP啊.... 思路: 定义dp[l][r][c1][c2]表示对于区间(l,r)来说, ...
随机推荐
- js array数组对象操作方法汇总
--------------------------更新自2018.6.11 js 数组对象操作方法如下: 1. 创建数组 var array1 = [1,2] //方法一 var array2 = ...
- Mysql(压缩包)下载与安装
第一步:百度搜索 MySQL 点击官网进入 或者复制链接进入下载页面:https://downloads.mysql.com/archives/community/ 第二步:选择自己需要的 ...
- JQuery的ajax函数执行失败,alert函数弹框一闪而过
先查看<form>标签是否有action属性,如果没有,并且最后<button>标签的type属性为'submit‘时,默认提交位置就是当前页面 如果在页面右键检查,点击网络, ...
- C语言学习记录_2019.02.10
sizeof:给出某个类型或某个变量在内存中占据的字节数:(1个字节8位,即8比特) 格式符 (1)%ld表示数据按十进制有符号长型整数输入或输出. (2)%d表示数据按十进制有符号整型数输入或输出. ...
- R语言数据结构一
R是面向对象的语言,它跟其他编程语言的数据类型差不多,有四种,分别为:数值型,复数型,逻辑性和字符型 数值型:即数字,分为整数型和双精度型.数字可以用科学技术法表示,形式为Xe+m,意为x乘10的m次 ...
- ADI高速信号采集芯片与JESD204B接口简介
ADI高速信号采集芯片与JESD204B接口简介 JESD204B接口 介绍: JEDEC Standard No. 204B (JESD204B)—A standardized serial int ...
- 「PKUSC2018」最大前缀和
题面 题解 可以想到枚举成为最大前缀和的一部分的数 设\(sum_i=\sum\limits_{j\in i}a[j]\) 设\(f_i\)表示满足\(i\)的最大前缀和等于\(sum_i\)的方案数 ...
- hive streaming 使用的时候的一些心得
hive streaming 报错的解决方案: 1.把使用到hive streaming 的sql 分解,例如:select transform a,b,c,d using 'python cc.py ...
- guacamole实现RDP的下载
1. 配置说明 1.1 主要特别配置以下三项 enable-drive 默认情况下禁用文件传输,但启用文件传输后,RDP用户可以将文件传输到持久存在于Guacamole服务器上的虚拟驱动器.通过将此参 ...
- 【项目管理】 使用IntelliJ IDEA 将项目发布(提交)到GitLab
https://blog.csdn.net/zsq520520/article/details/51004721 gitlab地址: http://192.168.1.81:200 idea项目p ...