题目链接:

http://codeforces.com/problemset/problem/149/D

D. Coloring Brackets

time limit per test2 seconds
memory limit per test256 megabytes
#### 问题描述
> Once Petya read a problem about a bracket sequence. He gave it much thought but didn't find a solution. Today you will face it.
>
> You are given string s. It represents a correct bracket sequence. A correct bracket sequence is the sequence of opening ("(") and closing (")") brackets, such that it is possible to obtain a correct mathematical expression from it, inserting numbers and operators between the brackets. For example, such sequences as "(())()" and "()" are correct bracket sequences and such sequences as ")()" and "(()" are not.
>
> In a correct bracket sequence each bracket corresponds to the matching bracket (an opening bracket corresponds to the matching closing bracket and vice versa). For example, in a bracket sequence shown of the figure below, the third bracket corresponds to the matching sixth one and the fifth bracket corresponds to the fourth one.
>
>
> You are allowed to color some brackets in the bracket sequence so as all three conditions are fulfilled:
>
> Each bracket is either not colored any color, or is colored red, or is colored blue.
> For any pair of matching brackets exactly one of them is colored. In other words, for any bracket the following is true: either it or the matching bracket that corresponds to it is colored.
> No two neighboring colored brackets have the same color.
> Find the number of different ways to color the bracket sequence. The ways should meet the above-given conditions. Two ways of coloring are considered different if they differ in the color of at least one bracket. As the result can be quite large, print it modulo 1000000007 (109 + 7).
#### 输入
> The first line contains the single string s (2 ≤ |s| ≤ 700) which represents a correct bracket sequence.
#### 输出
> Print the only number — the number of ways to color the bracket sequence that meet the above given conditions modulo 1000000007 (109 + 7).
####样例输入
> (()())
####样例输出
> 40
## 题意
> 每对括号必须满足一边染成红色或蓝色,另一边不染色,且相邻的两个括号颜色不同。

题解

之前的一种思路是dp[l][r][s1][s2]代表最左边的括号的状态为s1,s2但是,这种是错的额!因为你看不到r右边的限制了!!!!

贴个错误代码:

#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<ctime>
#include<vector>
#include<cstdio>
#include<string>
#include<bitset>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
using namespace std;
#define X first
#define Y second
#define mkp make_pair
#define lson (o<<1)
#define rson ((o<<1)|1)
#define mid (l+(r-l)/2)
#define sz() size()
#define pb(v) push_back(v)
#define all(o) (o).begin(),(o).end()
#define clr(a,v) memset(a,v,sizeof(a))
#define bug(a) cout<<#a<<" = "<<a<<endl
#define rep(i,a,b) for(int i=a;i<(b);i++)
#define scf scanf
#define prf printf typedef long long LL;
typedef vector<int> VI;
typedef pair<int,int> PII;
typedef vector<pair<int,int> > VPII; const int INF=0x3f3f3f3f;
const LL INFL=0x3f3f3f3f3f3f3f3fLL;
const double eps=1e-8;
const double PI = acos(-1.0); //start---------------------------------------------------------------------- const int maxn=777;
const int mod=1e9+7; LL dp[maxn][maxn][3][3];
char str[maxn];
int rig[maxn];
int n; LL dfs(int l,int r,int s1,int s2) {
if(l>=r) return 0;
if(l+1==r&&(s1==0&&s2>0||s1>0||s2==0)) return 1;
if(dp[l][r][s1][s2]>=0) return dp[l][r][s1][s2]; LL &res=dp[l][r][s1][s2]=0; int ll=l,rr=rig[l]; LL cntl=0,cntr=0;
if(s1==0) {
if(ll+1<rr-1) {
cntl+=dfs(ll+1,rr-1,1,0);
cntl+=dfs(ll+1,rr-1,2,0);
cntl+=dfs(ll+1,rr-1,0,3-s2);
} else {
cntl=1;
}
cntl%=mod; if(rr+1>r) {
cntr=1;
} else {
cntr+=dfs(rr+1,r,0,1);
cntr+=dfs(rr+1,r,0,2);
cntr+=dfs(rr+1,r,3-s2,0);
}
cntr%=mod; res+=cntl*cntr;
res%=mod;
} else {
if(ll+1<rr-1) {
cntl+=dfs(ll+1,rr-1,3-s1,0);
cntl+=dfs(ll+1,rr-1,0,1);
cntl+=dfs(ll+1,rr-1,0,2);
} else {
cntl=1;
}
cntl%=mod; if(rr+1>r) {
cntr=1;
} else {
cntr+=dfs(rr+1,r,0,1);
cntr+=dfs(rr+1,r,0,2);
cntr+=dfs(rr+1,r,1,0);
cntr+=dfs(rr+1,r,2,0);
}
cntr%=mod; res+=cntl*cntr;
res%=mod;
} return res;
} int main() {
scf("%s",str+1);
n=strlen(str+1);
stack<int> mst;
clr(dp,-1);
clr(rig,-1);
for(int i=1; i<=n; i++) {
if(str[i]==')') {
rig[mst.top()]=i;
mst.pop();
} else {
mst.push(i);
}
}
// for(int i=1;i<=n;i++){
// prf("(%d,%d)\n",i,rig[i]);
// } LL ans=dfs(1,n,0,1)+dfs(1,n,0,2)+dfs(1,n,1,0)+dfs(1,n,2,0);
bug(dp[1][n][0][1]);
bug(dp[1][n][0][2]);
bug(dp[1][n][1][0]);
bug(dp[1][n][2][0]); bug(dp[2][5][2][0]); prf("%I64d\n",ans); return 0;
} //end----------------------------------------------------------------------- /*
(()())
*/

正确的表示应该是dp[l][r][s1][s2]代表l左边和r右边的限制!!!

#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<ctime>
#include<vector>
#include<cstdio>
#include<string>
#include<bitset>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
using namespace std;
#define X first
#define Y second
#define mkp make_pair
#define lson (o<<1)
#define rson ((o<<1)|1)
#define mid (l+(r-l)/2)
#define sz() size()
#define pb(v) push_back(v)
#define all(o) (o).begin(),(o).end()
#define clr(a,v) memset(a,v,sizeof(a))
#define bug(a) cout<<#a<<" = "<<a<<endl
#define rep(i,a,b) for(int i=a;i<(b);i++)
#define scf scanf
#define prf printf typedef long long LL;
typedef vector<int> VI;
typedef pair<int,int> PII;
typedef vector<pair<int,int> > VPII; const int INF=0x3f3f3f3f;
const LL INFL=0x3f3f3f3f3f3f3f3fLL;
const double eps=1e-8;
const double PI = acos(-1.0); //start---------------------------------------------------------------------- const int maxn=777;
const int mod=1e9+7; LL dp[maxn][maxn][3][3];
char str[maxn];
int rig[maxn];
int n; LL dfs(int l,int r,int s1,int s2) {
if(l>r) return 1;
if(dp[l][r][s1][s2]>=0) return dp[l][r][s1][s2]; LL &res=dp[l][r][s1][s2]=0;
int ll=l,rr=rig[l];
if(rr==r){
if(s1==0){
if(s2==0){
res+=dfs(ll+1,rr-1,0,1);
res+=dfs(ll+1,rr-1,0,2);
res+=dfs(ll+1,rr-1,1,0);
res+=dfs(ll+1,rr-1,2,0);
res%=mod;
}else{
res+=dfs(ll+1,rr-1,0,3-s2);
res+=dfs(ll+1,rr-1,1,0);
res+=dfs(ll+1,rr-1,2,0);
res%=mod;
}
}else{
if(s2==0){
res+=dfs(ll+1,rr-1,0,1);
res+=dfs(ll+1,rr-1,0,2);
res+=dfs(ll+1,rr-1,3-s1,0);
res%=mod;
}else{
res+=dfs(ll+1,rr-1,0,3-s2);
res+=dfs(ll+1,rr-1,3-s1,0);
res%=mod;
}
}
}else{
if(s1==0){
res=(res+dfs(ll+1,rr-1,0,1)*dfs(rr+1,r,1,s2)%mod)%mod;
res=(res+dfs(ll+1,rr-1,0,2)*dfs(rr+1,r,2,s2)%mod)%mod;
res=(res+dfs(ll+1,rr-1,1,0)*dfs(rr+1,r,0,s2)%mod)%mod;
res=(res+dfs(ll+1,rr-1,2,0)*dfs(rr+1,r,0,s2)%mod)%mod;
}else{
res=(res+dfs(ll+1,rr-1,0,1)*dfs(rr+1,r,1,s2)%mod)%mod;
res=(res+dfs(ll+1,rr-1,0,2)*dfs(rr+1,r,2,s2)%mod)%mod;
res=(res+dfs(ll+1,rr-1,3-s1,0)*dfs(rr+1,r,0,s2)%mod)%mod;
}
} return res;
} int main() {
scf("%s",str+1);
n=strlen(str+1);
stack<int> mst;
clr(dp,-1);
clr(rig,-1);
for(int i=1; i<=n; i++) {
if(str[i]==')') {
rig[mst.top()]=i;
mst.pop();
} else {
mst.push(i);
}
} LL ans=dfs(1,n,0,0);
prf("%I64d\n",ans); return 0;
} //end----------------------------------------------------------------------- /*
(()())
*/

短一点的代码:

#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<ctime>
#include<vector>
#include<cstdio>
#include<string>
#include<bitset>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
using namespace std;
#define X first
#define Y second
#define mkp make_pair
#define lson (o<<1)
#define rson ((o<<1)|1)
#define mid (l+(r-l)/2)
#define sz() size()
#define pb(v) push_back(v)
#define all(o) (o).begin(),(o).end()
#define clr(a,v) memset(a,v,sizeof(a))
#define bug(a) cout<<#a<<" = "<<a<<endl
#define rep(i,a,b) for(int i=a;i<(b);i++)
#define scf scanf
#define prf printf typedef long long LL;
typedef vector<int> VI;
typedef pair<int,int> PII;
typedef vector<pair<int,int> > VPII; const int INF=0x3f3f3f3f;
const LL INFL=0x3f3f3f3f3f3f3f3fLL;
const double eps=1e-8;
const double PI = acos(-1.0); //start---------------------------------------------------------------------- const int maxn=777;
const int mod=1e9+7; LL dp[maxn][maxn][3][3];
char str[maxn];
int rig[maxn];
int n; LL dfs(int l,int r,int s1,int s2) {
if(l>r) return 1;
if(dp[l][r][s1][s2]>=0) return dp[l][r][s1][s2]; LL &res=dp[l][r][s1][s2]=0;
int ll=l,rr=rig[l];
for(int i=1;i<=2;i++){
//left
if(i!=s1) res=(res+dfs(ll+1,rr-1,i,0)*dfs(rr+1,r,0,s2)%mod)%mod;
//right
if(rr<r||i!=s2) res=(res+dfs(ll+1,rr-1,0,i)*dfs(rr+1,r,i,s2)%mod)%mod;
} return res;
} int main() {
scf("%s",str+1);
n=strlen(str+1);
stack<int> mst;
clr(dp,-1);
clr(rig,-1);
for(int i=1; i<=n; i++) {
if(str[i]==')') {
rig[mst.top()]=i;
mst.pop();
} else {
mst.push(i);
}
} LL ans=dfs(1,n,0,0);
prf("%I64d\n",ans); return 0;
} //end----------------------------------------------------------------------- /*
(()())
*/

Codeforces Round #106 (Div. 2) D. Coloring Brackets 区间dp的更多相关文章

  1. Codeforces Round #106 (Div. 2) D. Coloring Brackets —— 区间DP

    题目链接:https://vjudge.net/problem/CodeForces-149D D. Coloring Brackets time limit per test 2 seconds m ...

  2. Codeforces Round #369 (Div. 2) C. Coloring Trees(dp)

    Coloring Trees Problem Description: ZS the Coder and Chris the Baboon has arrived at Udayland! They ...

  3. Codeforces Round #369 (Div. 2) C. Coloring Trees (DP)

    C. Coloring Trees time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  4. Codeforces Round #369 (Div. 2) C. Coloring Trees(简单dp)

    题目:https://codeforces.com/problemset/problem/711/C 题意:给你n,m,k,代表n个数的序列,有m种颜色可以涂,0代表未涂颜色,其他代表已经涂好了,连着 ...

  5. Codeforces Round #336 (Div. 2) D. Zuma(区间DP)

    题目链接:https://codeforces.com/contest/608/problem/D 题意:给出n个宝石的颜色ci,现在有一个操作,就是子串的颜色是回文串的区间可以通过一次操作消去,问最 ...

  6. Codeforces Round #367 (Div. 2) C. Hard problem(DP)

    Hard problem 题目链接: http://codeforces.com/contest/706/problem/C Description Vasiliy is fond of solvin ...

  7. codeforces 149D Coloring Brackets (区间DP + dfs)

    题目链接: codeforces 149D Coloring Brackets 题目描述: 给一个合法的括号串,然后问这串括号有多少种涂色方案,当然啦!涂色是有限制的. 1,每个括号只有三种选择:涂红 ...

  8. CF149D. Coloring Brackets[区间DP !]

    题意:给括号匹配涂色,红色蓝色或不涂,要求见原题,求方案数 区间DP 用栈先处理匹配 f[i][j][0/1/2][0/1/2]表示i到ji涂色和j涂色的方案数 l和r匹配的话,转移到(l+1,r-1 ...

  9. codeforce 149D Coloring Brackets 区间DP

    题目链接:http://codeforces.com/problemset/problem/149/D 继续区间DP啊.... 思路: 定义dp[l][r][c1][c2]表示对于区间(l,r)来说, ...

随机推荐

  1. #leetcode刷题之路44-通配符匹配

    给定一个字符串 (s) 和一个字符模式 (p) ,实现一个支持 '?' 和 '*' 的通配符匹配.'?' 可以匹配任何单个字符.'*' 可以匹配任意字符串(包括空字符串).两个字符串完全匹配才算匹配成 ...

  2. Linux学习笔记(第五章)

    第五章-常用指令 下达指令: 1.[Tab] 2.man + (指令):显示操作说明 开头代号 man page 常用按键

  3. webSocket入门

    原理:Pub-Sub(发布和订阅) 它适用于发送者将数据(发布者)发送给抽象数量的收件人(订阅者),而无需指定他们是谁. 1.是 HTML5 开始提供的一种在单个 TCP 连接上进行全双工通讯的协议 ...

  4. python-redis列表模式

    往列表里存放数据先进后出(左进) lpush  names  A  B C D E 往列表里存放数据后进先出(右进) rpush names  G P H K 查看列表里面的数据: lrange na ...

  5. Kali渗透测试2-抓包/DNS工具

    转载请注明出处. TCPDUMP:命令行网络抓包工具tcpdump -h tcpdump version 4.9.2 libpcap version 1.8.1 OpenSSL 1.1.0h 27 M ...

  6. C# 用QQ企业邮箱发邮件

    问题System.Net.Mail下的SmtpClient来发送邮件,而System.Net.Mail only仅支持Explicit SSL 不要465端口,用25,不用EnableSsl = tr ...

  7. JavaEE笔记(六)

    实现Action的几种方法1. implements Action2. extends ActionSupport3. 也可以不继承任何父类不实现任何借口 #当一个类有多个方法 package com ...

  8. Linux5下安装MySQL过程记录

    磨砺技术珠矶,践行数据之道,追求卓越价值 回到上一级页面: PostgreSQL杂记页     回到顶级页面:PostgreSQL索引页 [作者 高健@博客园  luckyjackgao@gmail. ...

  9. c++ 标准流文件

    一.标准流stdin,stdout,stderr   标准输入流stdin: 是程序可以读取其输入的位置.缺省情况下,进程从键盘读取 stdin . fscanf(stdin,"%d%d%f ...

  10. [HNOI2012]永无乡 线段树合并

    [HNOI2012]永无乡 LG传送门 线段树合并练手题,写这篇博客只是为了给我的这篇文章找个板子题. 并查集维护连通性,对于不在同一个连通块内的合并操作每次直接合并两颗线段树,复杂度\(O(n \l ...