5.1.10. Capture Conversion

Let G name a generic type declaration (§8.1.2, §9.1.2) with n type parameters A1,...,An with corresponding bounds U1,...,Un.

There exists a capture conversion from a parameterized type G<T1,...,Tn> (§4.5) to a parameterized type G<S1,...,Sn>, where, for 1 ≤ in :

  • If Ti is a wildcard type argument (§4.5.1) of the form ?, then Si is a fresh type variable whose upper bound is Ui[A1:=S1,...,An:=Sn] and whose lower bound is the null type (§4.1).

  • If Ti is a wildcard type argument of the form ? extends Bi, then Si is a fresh type variable whose upper bound is glb(Bi, Ui[A1:=S1,...,An:=Sn]) and whose lower bound is the null type.

    glb(V1,...,Vm) is defined as V1 & ... & Vm.

    It is a compile-time error if, for any two classes (not interfaces) Vi and Vj, Vi is not a subclass of Vj or vice versa.

  • If Ti is a wildcard type argument of the form ? super Bi, then Si is a fresh type variable whose upper bound is Ui[A1:=S1,...,An:=Sn] and whose lower bound is Bi.

  • Otherwise, Si = Ti.

Capture conversion on any type other than a parameterized type (§4.5) acts as an identity conversion (§5.1.1).

Capture conversion is not applied recursively.

就是说在G<T1>到G<S1>的过程中可能T1类型也是T1<X>这样的类型。

Capture conversion never requires a special action at run time and therefore never throws an exception at run time.

4.10.4. Least Upper Bound

 

List<String>

List<Object>

ST(Ui)

the set of supertypes of Ui.

ST(List<String>)=

{

List<String>

Collection<String>

Object 

ST(List<Object>)=

List<Object>

Collection<Object>

Object 

EST(Ui)

the set of erased supertypes of U

EST(List<String>)=

List

Collection

Object 

EST(List<Object>)=

List

Collection

Object

}

EC

the intersection of all the sets EST(Ui

EC =

List

Collection

Object 

}

MEC

the minimal erased candidate set

for U1 ... Uk

MEC =

List 

}

Relevant(G)

Relevant(G) =

V | 1≤ik:

V in ST(Ui) and V=G<...> 

}

Relevant(List) =

List<String>

List<Object>

}

 

The least upper bound, or "lub", of a set of reference types is a shared supertype that is more specific than any other shared supertype (that is, no other shared supertype is a subtype of the least upper bound). This type, lub(U1, ..., Uk), is determined as follows.

If k = 1, then the lub is the type itself: lub(U) = U.

Otherwise:

  • For each Ui (1 ≤ ik):

    Let ST(Ui) be the set of supertypes of Ui.

    Let EST(Ui), the set of erased supertypes of Ui, be:

    EST(Ui) = { |W| | W in ST(Ui) } where |W| is the erasure of W.

    The reason for computing the set of erased supertypes is to deal with situations where the set of types includes several distinct parameterizations of a generic type.

    For example, given List<String> and List<Object>, simply intersecting the sets ST(List<String>) = { List<String>, Collection<String>, Object } and ST(List<Object>) = { List<Object>, Collection<Object>, Object } would yield a set { Object }, and we would have lost track of the fact that the upper bound can safely be assumed to be a List.

    In contrast, intersecting EST(List<String>) = { List, Collection, Object } and EST(List<Object>) = { List, Collection, Object } yields { List, Collection, Object }, which will eventually enable us to produce List<?>.

  • Let EC, the erased candidate set for U1 ... Uk, be the intersection of all the sets EST(Ui) (1 ≤ ik).

  • Let MEC, the minimal erased candidate set for U1 ... Uk, be:

    MEC = { V | V in EC, and for all W ≠ V in EC, it is not the case that W <: V }

    Because we are seeking to infer more precise types, we wish to filter out any candidates that are supertypes of other candidates. This is what computing MEC accomplishes. In our running example, we had EC = { List, Collection, Object }, so MEC = { List }. The next step is to recover type arguments for the erased types in MEC.

  • For any element G of MEC that is a generic type:

    Let the "relevant" parameterizations of G, Relevant(G), be:

    Relevant(G) = { V | 1 ≤ ik: V in ST(Ui) and V = G<...> }

    In our running example, the only generic element of MEC is List, and Relevant(List) = { List<String>, List<Object> }. We will now seek to find a type argument for List that contains (§4.5.1) both String and Object.

    This is done by means of the least containing parameterization (lcp) operation defined below. The first line defines lcp() on a set, such as Relevant(List), as an operation on a list of the elements of the set. The next line defines the operation on such lists, as a pairwise reduction on the elements of the list. The third line is the definition of lcp() on pairs of parameterized types, which in turn relies on the notion of least containing type argument (lcta). lcta() is defined for all possible cases.

    Let the "candidate" parameterization of G, Candidate(G), be the most specific parameterization of the generic type G that contains all the relevant parameterizations of G:

    Candidate(G) = lcp(Relevant(G))  // Relevant(G)经过lcp运算后就会得到the most specific parameterization of the generic type G

    where lcp(), the least containing invocation, is:

    •  lcp(S) = lcp(e1, ..., en) where ei (1 ≤ in) in S  // 第一行定义了lcp()

    •  lcp(e1, ..., en) = lcp(lcp(e1, e2), e3, ..., en) // 第二行两两来减少列表中的元素

    •  lcp(G<X1, ..., Xn>, G<Y1, ..., Yn>) = G<lcta(X1, Y1), ..., lcta(Xn, Yn)> // 依赖lcta进行操作,lcta列举出了两个元素的所有情况

    •  lcp(G<X1, ..., Xn>) = G<lcta(X1), ..., lcta(Xn)>

    and where lcta(), the least containing type argument, is: (assuming U and V are types)

    • lcta(U, V) = U if U = V, otherwise ? extends lub(U, V)

    • lcta(U, ? extends V) = ? extends lub(U, V)

    • lcta(U, ? super V) = ? super glb(U, V)

    • lcta(? extends U, ? extends V) = ? extends lub(U, V)

    • lcta(? extends U, ? super V) = U if U = V, otherwise ?

    • lcta(? super U, ? super V) = ? super glb(U, V)

    • lcta(U) = ? if U's upper bound is Object, otherwise ? extends lub(U,Object)

    and where glb() is as defined in §5.1.10.

  • Let lub(U1 ... Uk) be:

    Best(W1) & ... & Best(Wr)

    where Wi (1 ≤ ir) are the elements of MEC, the minimal erased candidate set of U1 ... Uk;

    and where, if any of these elements are generic, we use the candidate parameterization (so as to recover type arguments):

    Best(X) = Candidate(X) if X is generic; X otherwise.

Strictly speaking, this lub() function only approximates a least upper bound. Formally, there may exist some other type T such that all of U1 ... Uk are subtypes of T and T is a subtype of lub(U1, ..., Uk). However, a compiler for the Java programming language must implement lub() as specified above.

It is possible that the lub() function yields an infinite type. This is permissible, and a compiler for the Java programming language must recognize such situations and represent them appropriately using cyclic data structures.

The possibility of an infinite type stems from the recursive calls to lub(). Readers familiar with recursive types should note that an infinite type is not the same as a recursive type.

The declared type of an exception parameter that denotes its type as a union with alternatives D1 | D2 | ... | Dn is lub(D1, D2, ..., Dn) (§15.12.2.7).

参考:https://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html#jls-14.20

参考:

(1)https://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html

(2)https://docs.oracle.com/javase/specs/jls/se8/html/jls-5.html#jls-5.1.10

Javac之glb与lub的更多相关文章

  1. Fedora javac 命令提示 [javac: 未找到命令...]

    [joy@localhost ~]$ java -version openjdk version "1.8.0_91" OpenJDK Runtime Environment (b ...

  2. javac -encoding utf8 in linux

    由于另外负责编码的同事用的是utf-8,我用的默认的编码格式gbk,在提交代码时,为了迁就他,我打算把格式用工具转成utf-8. 转化成果后,然后在make一下,发现javac -encoding u ...

  3. javac编译不同目录的源码提示找不到符号

    对于单个文件的且不引用其他类文件的java源码用javac编译大家都很熟悉即 javac mycode.java 但是如果这个文件引用到了其他的类文件,在进行编译的时候就会提示找不到符号,这时我们需要 ...

  4. JAVA安装过程中出现的“javac不是内部或外部指令”的解决方法

    近来重新安装了JAVA,安装过程中出现问题,网上找到解决办法,汇总发布. 解决流程: 1.确定自己的环境变量设置没问题,没有出现遗漏 : . 等情况 (具体环境变量设置百度) 2.环境变量设置后 ,d ...

  5. java与javac命令的功用

    一.javac用来编译java程序,比如说我写了一个Server.java文件,首先通过命令行进入.java文件所在的路径, 然后通过输入 javac Server.java 命令行来完成编译,编译之 ...

  6. Maven打包 报 Unable to locate the Javac Compiler in: C:\Program Files\Java\jre1.8.0_73\..\lib\tools.jar

    无法找到javac 编译环境 右键项目 --> properties -->Java Build Path -->选中JRE 点击右侧 Edit 编辑 --> 把你设置的JRE ...

  7. eclipse中的javac命令与java命令

    一.eclipse的javac命令:当eclipse对.java(源文件)文件进行保存操作时(快捷键ctrl+s),会执行javac命令.见上图,Default output folder(默认输出文 ...

  8. 配置javac环境

    初始的javac是默认不可用,如下图: 系统变量->新建->变量名:JAVA_HOME 变量值:(C:\Program Files\Java\jdk1.7.0_03)(这只是我的JDK安装 ...

  9. javac 导入第三方jar包

    如果是导入一个包,只需要 javac -classpath xxx/xxx/xxx.jar xxx.java 即可 如果有多个包,windows下用分号隔开,Lunix下用冒号隔开即可.

随机推荐

  1. Swift中的闭包(Closure)[转]

    闭包在Swift中非常有用.通俗的解释就是一个Int类型里存储着一个整数,一个String类型包含着一串字符,同样,闭包是一个包含着函数的类型.有了闭包,你就可以处理很多在一些古老的语言中不能处理的事 ...

  2. python技巧31[python中使用enum][转]

    以下几种方法来模拟enum:(感觉方法一简单实用) # way1 class Directions:     up = 0     down = 1     left = 2     right =3 ...

  3. iOS平台设置系统状态栏(通知栏、顶部状态栏)样式背景颜色或透明

    5+App开发 状态栏 配置系统状态栏样式 iOS平台可支持对系统状态栏样式的配置,在应用manifest.json文件的plus->distribute->apple下添加UIStatu ...

  4. 20155302 2016-2017-2 《Java程序设计》第六周学习总结

    20155302 2016-2017-2 <Java程序设计>第6周学习总结 教材学习内容总结 Java中的流分为两种,一种是字节流,另一种是字符流,分别由四个抽象类来表示(每种流包括输入 ...

  5. java梳理-序列化与反序列化

    一背景: 之前笔记关于rpc框架介绍中,提到为了调用远程服务,需要再确定消息结构后考虑序列化与反序列化,序列化主要是把对象转换成二进制码便于网络传输,反序列化就是相反的,主要目的是生成对象便于后续处理 ...

  6. web.xml文件中context-param、listener、filter、servlet的执行顺序

    首先可以肯定的是,加载顺序与它们在 web.xml 文件中的先后顺序无关.即不会因为 filter 写在 listener 的前面而会先加载 filter.最终得出的结论是:listener -> ...

  7. git 在非空文件夹clone新项目

    在非空目录下 git clone 项目时会提示错误信息: fatal: destination path '.' already exists and is not an empty director ...

  8. [FMX]在你的跨平台应用中使用剪贴板进行复制粘贴

    [FMX]在你的跨平台应用中使用剪贴板进行复制粘贴 2017-08-10 • Android.C++ Builder.Delphi.iOS.教程 • 暂无评论 • swish •浏览 516 次 VC ...

  9. RabbitMQ广播模式

    广播模式:1对多,produce发送一则消息多个consumer同时收到.注意:广播是实时的,produce只负责发出去,不会管对端是否收到,若发送的时刻没有对端接收,那消息就没了,因此在广播模式下设 ...

  10. 学习《精通数据科学从线性回归到深度学习》PDF+代码分析

    数据科学内容广泛,涉及到统计分析.机器学习以及计算机科学三方面的知识和技能.学习数据科学,推荐学习<精通数据科学从线性回归到深度学习>. 针对技术书籍,最好的阅读方法是对照每一章的示例代码 ...