传送门

这是一道很有意思的题。

我们把所有的关键点都提出来,当成一棵有边权的虚树。

然后发现虚树上除最后不回到虚根的那条路径外外每条边都会被走两遍。

显然要让答案最优,不走的路径应该在虚树的直径上,于是我们dfs出虚树的直径。

注意对于不在虚树上的节点花费还需要多加dis(i,虚树)∗2dis(i,虚树)*2dis(i,虚树)∗2。

代码:

#include<bits/stdc++.h>
#define N 500005
#define ll long long
using namespace std;
inline int read(){
	int ans=0;
	char ch=getchar();
	while(!isdigit(ch))ch=getchar();
	while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
	return ans;
}
int n,k,first[N],siz[N],rt,cnt=0;
bool is[N];
ll d1[N],d2[N],sum=0;
struct edge{int v,next;ll w;}e[N<<1];
inline void add(int u,int v,ll w){e[++cnt].v=v,e[cnt].w=w,e[cnt].next=first[u],first[u]=cnt;}
inline void dfs1(int p,int fa){
	siz[p]=is[p];
	for(int i=first[p];i;i=e[i].next){
		int v=e[i].v;
		if(v==fa)continue;
		d1[v]=d1[p]+e[i].w;
		if(is[v]&&d1[v]>d1[rt])rt=v;
		dfs1(v,p);
		if(siz[v])sum+=e[i].w;
		siz[p]+=siz[v];
	}
	is[p]=(siz[p]!=0);
}
inline void dfs2(int p,int fa){
	for(int i=first[p];i;i=e[i].next){
		int v=e[i].v;
		if(v==fa)continue;
		d1[v]=d1[p]+e[i].w;
		if(is[v]&&d1[v]>d1[rt])rt=v;
		dfs2(v,p);
	}
}
inline void dfs3(int p,int fa){
	for(int i=first[p];i;i=e[i].next){
		int v=e[i].v;
		if(v==fa)continue;
		d2[v]=d2[p]+e[i].w;
		if(is[v]&&d2[v]>d2[rt])rt=v;
		dfs3(v,p);
	}
}
inline void dfs4(int p,int fa){
	for(int i=first[p];i;i=e[i].next){
		int v=e[i].v;
		if(v==fa)continue;
		d2[v]=(is[v]?0:d2[p]+e[i].w),dfs4(v,p);
	}
}
int main(){
	n=read(),k=read();
	for(int i=1;i<n;++i){
		int x=read(),y=read();
		ll z=read();
		add(x,y,z),add(y,x,z);
	}
	for(int i=1;i<=k;++i)is[rt=read()]=1;
	dfs1(rt,0),memset(d1,0,sizeof(d1)),dfs2(rt,0),dfs3(rt,0);
	for(int i=1;i<=n;++i)d1[i]=max(d1[i],d2[i]);
	memset(d2,0,sizeof(d2)),dfs4(rt,0);
	for(int i=1;i<=n;++i)printf("%lld\n",sum*2+d2[i]*2-d1[i]);
	return 0;
}

2018.09.28 bzoj3743: [Coci2015]Kamp(树形dp)的更多相关文章

  1. 【BZOJ3743】[Coci2015]Kamp 树形DP

    [BZOJ3743][Coci2015]Kamp Description 一颗树n个点,n-1条边,经过每条边都要花费一定的时间,任意两个点都是联通的. 有K个人(分布在K个不同的点)要集中到一个点举 ...

  2. 2018.09.06 警卫安排(树形dp)

    描述 太平王世子事件后,陆小凤成了皇上特聘的御前一品侍卫. 皇宫以午门为起点,直到后宫嫔妃们的寝宫,呈一棵树的形状:有边直接相连的宫殿可以互相望见.大内保卫森严,三步一岗,五步一哨,每个宫殿都要有人全 ...

  3. bzoj 3743 [Coci2015]Kamp——树形dp+换根

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3743 树形dp+换根. “从根出发又回到根” 减去 “mx ” . 注意dfsx里真的要改那 ...

  4. 2018.09.28 bzoj3688: 折线统计(dp+树状数组)

    传送门 简单树状数组优化dp. 注意到k很小提示我们搜(d)(d)(d)索(p)(p)(p). 先按第一维排序. 用f[i][j][0/1]f[i][j][0/1]f[i][j][0/1]表示第i个点 ...

  5. bzoj3743 [Coci2015]Kamp 常州模拟赛d6t2

    3743: [Coci2015]Kamp Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 484  Solved: 229[Submit][Status ...

  6. 『kamp 树形dp』

    kamp Description jz 市的云台山是个很美丽的景区,小 x 暑期到云台山打工,他的任务是开景区的大巴. 云台山景区有 N 个景点,这 N 个景点由 N-1 条道路连接而成,我们保证这 ...

  7. bzoj 3743 [ Coci 2015 ] Kamp —— 树形DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3743 一开始想到了树形DP,处理一下子树中的最小值,向上的最小值,以及子树中的最长路和向上的 ...

  8. [bzoj3743 Coci2015] Kamp(树形dp)

    传送门 Description 一颗树n个点,n-1条边,经过每条边都要花费一定的时间,任意两个点都是联通的. 有K个人(分布在K个不同的点)要集中到一个点举行聚会. 聚会结束后需要一辆车从举行聚会的 ...

  9. [Bzoj3743][Coci2015] Kamp【换根Dp】

    Online Judge:Bzoj3743 Label:换根Dp,维护最长/次长链 题目描述 一颗树n个点,n-1条边,经过每条边都要花费一定的时间,任意两个点都是联通的. 有K个人(分布在K个不同的 ...

随机推荐

  1. 笔记本 T450的鼠标经常不灵

    T450的鼠标经常不灵,鼠标总感觉有延迟. 换了鼠标也是这样. 有人反应说是USB断电, 使用的是省电模式,在设备管理>鼠标>电源选项>节电模式 勾去掉就可以了, 但是我的节点模式是 ...

  2. win2008安装IIS

    win2008安装IIS http://jingyan.baidu.com/article/fec4bce2398747f2618d8b88.html http://127.0.0.1/ 新建网站,端 ...

  3. c++builder 6 远程调试

    Delphi7环境 一.目标远程机器: 安装服务光盘里有,单独安装,启动,启动后目标机的托盘图标中会出现一个小“虫子”debug的图标 bordbg61.exe D:\Program Files (x ...

  4. AS3 os与version 区别 使用Capabilities类获取Flash Player的信息

    AS3中flash.system.Capabilities类提供诸多静态的只读属性来描述应用程序当前所运行在的系统和运行时信息,如Flash Player,Adobe AIR,Flash Lite.通 ...

  5. SpringMVC知识(1)

    1.SpringMVC的工作流程 流程 : 1.用户发送请求至前端控制器DispatcherServlet 2.DispatcherServlet收到请求调用HandlerMapping处理器映射器. ...

  6. 关于struts2中ActionContext类的作用

    关于struts2中ActionContext类的作用有三个: 1.获取三大作用域对象及页面参数 2.是struts标签的上下文对象 3.ThreadLocal内装的就是ActionContext 怎 ...

  7. python中'+'和'+='的区别(转)

    原文:python - If x is list, why does x += “ha” work, while x = x + “ha” throw an exception? 译文:在 pytho ...

  8. MySql ERROR 1045 (28000): Access denied 错误

    [MySql ERROR 1045 (28000): Access denied 错误] 即登陆错误,使用MySql登陆时,需使正确的username/passwd.通过 -u -p 参数即可. My ...

  9. 将2020年交期的PR回写出来了

    OUT_pr表中的交期为2020年和2019年,不应该 回写的PR却回写出来了 优化如下:

  10. shell脚本通过expect脚本实现自动输入密码(使用expect)

    背景:在远程文件下载时,需要输入对方的服务器密码,shell不支持交互输入内容,可以用下面两种方式实现   一.在shell脚本中嵌入expect来实现密码输入 expect是一个自动交互功能的工具. ...