题目描述

给定一个长度为n的序列,你有一次机会选中一段连续的长度不超过d的区间,将里面所有数字全部修改为0。请找到最长的一段连续区间,使得该区间内所有数字之和不超过p。

输入格式:

第一行包含三个整数n,p,d(1<=d<=n<=2000000,0<=p<=10^16)。第二行包含n个正整数,依次表示序列中每个数wi

输出格式:

包含一行一个正整数,即修改后能找到的最长的符合条件的区间的长度。

题解:

发现,肯定要选择最多的d变成0,不然不优。并且,如果以i作为结尾,左端点为j的话,那么如果以i+1作为结尾,左端点不可能比j小。

所以,可以用一个双指针,维护L,R,

L、R为一个合法区间条件是,L~R的数的和,减去最大的长度为d的和,总和少于等于p

对于给定R,L不满足的时候,就把L右移即可。

至于L~R中长度等于d的最大的和,可以用一个单调队列维护。

复杂度O(n)

代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=+;
int n,d;
ll p;
int ans;
int q[N],l,r;
ll sum[N],a[N];
int main()
{
scanf("%d%lld%d",&n,&p,&d);
for(int i=;i<=n;i++){
scanf("%lld",&a[i]);
sum[i]=sum[i-]+a[i];
}
int L=,R=;
l=,r=;
q[++r]=d;
for(R=d;R<=n;R++){
//cout<<R<<endl;
while(sum[R]-sum[L-]-(sum[q[l]]-sum[q[l]-d])>p){
L++;
while(l<=r&&q[l]-d+<L) l++;
} if(l<=r&&sum[R]-sum[L-]-(sum[q[l]]-sum[q[l]-d])<=p) ans=max(ans,R-L+);
//cout<<L<<endl;
if(R!=n){
while(l<=r&&sum[R+]-sum[R+-d]>sum[q[r]]-sum[q[r]-d]) r--;
q[++r]=R+;
}
}
printf("%d",ans);
return ;
}

[POI2015]WIL-Wilcze doły的更多相关文章

  1. BZOJ 4385: [POI2015]Wilcze doły

    4385: [POI2015]Wilcze doły Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 648  Solved: 263[Submit][ ...

  2. [POI2015]Wilcze doły

    [POI2015]Wilcze doły 题目大意: 给定一个长度为\(n(n\le2\times10^6)\)的数列\(A(1\le A_i\le10^9)\),可以从中选取不超过\(d\)个连续数 ...

  3. 【BZOJ4385】[POI2015]Wilcze doły 单调栈+双指针法

    [BZOJ4385][POI2015]Wilcze doły Description 给定一个长度为n的序列,你有一次机会选中一段连续的长度不超过d的区间,将里面所有数字全部修改为0.请找到最长的一段 ...

  4. BZOJ4385 : [POI2015]Wilcze doły

    求出前缀和$s$,设$f[i]=s[i+d-1]-s[i-1]$. 从左到右枚举的右端点$i$,左端点$j$满足单调性,若$s[i]-s[j-1]-\max(区间内最大的f)\leq p$,则可行. ...

  5. BZOJ4385[POI2015]Wilcze doły——单调队列+双指针

    题目描述 给定一个长度为n的序列,你有一次机会选中一段连续的长度不超过d的区间,将里面所有数字全部修改为0.请找到最长的一段连续区间,使得该区间内所有数字之和不超过p. 输入 第一行包含三个整数n,p ...

  6. bzoj 4385: [POI2015]Wilcze doły【单调栈】

    对于每个i,以它为左端点的最优右端点一定是单增的,所以用单调栈维护 具体的,单调栈里放的是和单调的长为d的子段,然后枚举右端点,如果这段的和-当前长为d子段最大的和大于p的话,左端点右移同时注意单调栈 ...

  7. 【bzoj4385】[POI2015]Wilcze doły

    单调队列扫描,记录当前区间长度为d的一段的和的最大值,和当前区间和. #include<algorithm> #include<iostream> #include<cs ...

  8. bzoj4385 Wilcze doły

    Description 给定一个长度为n的序列,你有一次机会选中一段连续的长度不超过d的区间,将里面所有数字全部修改为0.请找到最长的一段连续区间,使得该区间内所有数字之和不超过p. Input 第一 ...

  9. bzoj4385 & POJ2015 Wilcze doły

    Description 给定一个长度为n的序列,你有一次机会选中一段连续的长度不超过d的区间,将里面所有数字全部修改为0.请找到最长的一段连续区间,使得该区间内所有数字之和不超过p. Input 第一 ...

  10. [bzoj4385][POI2015]Wilcze doły_单调队列

    Wilcze doły bzoj-4385 POI-2015 题目大意:给定一个n个数的序列,可以将连续的长度不超过d的区间内所有数变成0,求最长的一段区间,使得区间和不超过p. 注释:$1\le n ...

随机推荐

  1. kafka consumer demo

    kafka消费者demo pom文件 <?xml version="1.0" encoding="UTF-8"?> <project xmln ...

  2. killall命令详解

    基础命令学习目录首页 原文链接:https://blog.csdn.net/tanga842428/article/details/52474250 Linux系统中的killall命令用于杀死指定名 ...

  3. Python函数式编程中map()、reduce()和filter()函数的用法

    Python中map().reduce()和filter()三个函数均是应用于序列的内置函数,分别对序列进行遍历.递归计算以及过滤操作.这三个内置函数在实际使用过程中常常和“行内函数”lambda函数 ...

  4. Windows环境下,从零开始搭建Nodejs+Express+Ejs框架(二)---安装Express,ejs

    安装Express,ejs的前提是一定要先安装nodejs,具体安装方法请查看 http://www.cnblogs.com/tfiremeteor/p/8973105.html 安装Express和 ...

  5. C++:构造函数2——拷贝构造函数

     前言:拷贝构造函数是C++中的重点之一,在这里对其知识进行一个简单的总结. 一.什么是拷贝构造函数 在C++中,对于内置类型的变量来说,在其创建的过程中用同类型的另一个变量来初始化它是完全可以的,如 ...

  6. "私人助手"NABCD分析

    ---恢复内容开始--- 团队开发项目“私人助手”需求分析NABCD模型: (1)N(Need需求):“私人助手”解决了几类人遇到非常多的事情,非常繁琐,“私人助手”为用户解决这个问题,让用户的工作更 ...

  7. BNUOJ 52308 We don't wanna work! set模拟

    题目链接: https://acm.bnu.edu.cn/v3/problem_show.php?pid=52308 We don't wanna work! Time Limit: 60000msM ...

  8. 西门子S7系列PLC的主要种类及应用软件

    德国西门子(SIEMENS)公司生产的可编程序控制器在我国的应用也相当广泛,在冶金.化工.印刷生产线等领域都有应用.西门子(SIEMENS)公司的PLC产品包括LOGO,S7-200,S7-300,S ...

  9. js数组遍历 千万不要使用for...in...

    昨天做个下拉框 扩充了一下数组的方法 Array.prototype.remove = function (val) { var index = this.indexOf(val); if (inde ...

  10. 个人作业 - Week2 - 代码复审

    代码复审Check List 概要部分 代码能符合需求和规格说明么? 能完成1~1000000个数独的求解与生成,并能处理异常输入,满足需求. 代码设计是否有周全的考虑? 为输入单独开设了一个输入检测 ...