TCP/IP协议栈概述及各层包头分析
TCP/IP协议栈中各层包头的分析
Protocol列表示的是该数据包最高层对应的协议,Length列表示该包的长度(包括从底层的协议到最高层的协议,其中包头一般是,链路层14字节,IP20字节,TCP20字节)
1、获取数据包
(a) 以“DIY_DE2之DM9000A网卡调试系列例程(二)——DM9000A测试、自收发、实现UDP”为实例
获取数据包的方式有两种:通过wireshark抓包工具抓取数据包和通过NIOS II端中断的方式获取PC端发送的数据包,获取的数据包分别如下:
通过wireshark获得:
e0 cb 4e b7 9e d1 01 60
6e 11 02 0f 08 00 45 00
05 d8 00 00 00 00 80 11
b1 97 c0 a8 00 2c c0 a8
02 01 04 00 04 00 05 c4
00 00
这42个字节即是该例程的数据发送到PC端的包头,42个字节之后就是有效数据,最后的4个字节则为校验位。通过上述例程语句也能很清楚的分析各个数据的含义。
通过NIOS II端获得:
ff ff ff ff ff ff e0 cb
4e b7 9e d1 08 00 45 00
00 1e 3c ac 00 00 80 11
3b 7a c0 a8 02 01 ff ff
ff ff 04 00 04 00 00 0a
04 31
同上。
由于该例程主要是实现UDP,所以TCP包头不够明了,为了全面的分析各个包头,将使用下面的例程。
(b) 以“DIY_DE2之DM9000A网卡调试系列例程(四)——基于NicheStack协议栈的TCP/IP实现”为实例
通过wireshark获取的数据包如下:
00 07 ed ff 06 00 00 0f
ea fd 9f 96 08 00 45 00
00 29 38 13 40 00 40 06
7d 60 c0 a8 02 0a c0 a8
02 01 18 98 00 17 37 8d
49 3b 00 46 74 e0 50 18
fe d9 ea f7 00 00 32
下面将对其做具体分析。
2、MAC包头
MAC包头占有14字节,即:
00 07 ed ff 06 00 00 0f ea fd 9f 96 08 00
很容易看出来 00 07 ed ff 06 00 和 00 0f ea fd 9f 96 分别是DIY_DE2和PC的MAC地址,后面的 08 00,不知道是什么。
3、IP包头
IP包头占有20个字节,即:
45 00 00 29 38 13 40 00 40 06 7d 60 c0 a8 02 0a c0 a8 02 01
(1) “45”,其中“4”是IP协议的版本(Version),说明是IP4。“5”是IHL位,表示IP头部的长度,是一个4bit字段,最大就是1111了,值为12,IP头部的最大长度就是60字节。而这里为“5”,说明是20字节,这是标准的IP头部长度,头部报文中没有发送可选部分数据。
(2) “00”,服务类型(Type of Service)。这个8bit字段由3bit的优先权子字段(现在已经被忽略),4 bit的TOS子字段以及1 bit的未用字段(现在为0)构成.4 bit的TOS子字段包含:最小延时、最大吞吐量、最高可靠性以及最小费用构成,这四个1bit位最多只能有一个为1,本例中都为0,表示是一般服务。
(3) “00 29”,IP数据报文总长,包含头部以及数据,这里表示41字节。这41字节由20字节的IP头部以及21字节的TCP头构成(最后的一个字节为数据)。因此目前最大的IP数据包长度是65535字节。
(4) “38 13”,两个字节的标志位,这个是让目的主机来判断新来的分段属于哪个分组。
(5) “40”,转换为二进制就是“0100 0000”,其中第一位是IP协议目前没有用上的,为0。接着的是两个标志DF和MF。DF为1表示不要分段,MF为1表示还有进一步的分段(本例为0)。然后的“0 0000”是分段便移(Fragment Offset)。
(6) “00”,待定。
(7) “40”这个字节就是TTL(Time To Live)了,表示一个IP数据流的生命周期,用Ping显示的结果,能得到TTL的值,很多文章就说通过TTL位来判别主机类型。因为一般主机都有默认的TTL值,不同系统的默认值不一样。比如WINDOWS为128。不过,一般Ping得到的都不是默认值,这是因为每次IP数据包经过一个路由器的时候TTL就减一,当减到0时,这个数据包就消亡了。这也时Tracert的原理。本例中为“40”,转换为十进制就是64了,我用的WinXP。
(8) “06”,这个字节表示传输层的协议类型(Protocol)。在RFC790中有定义,6表示传输层是TCP协议。
(9) “7d 60”这个16bit是头校验和(Header Checksum)。
(10) “c0 a8 02 0a”,这个是源地址,也就是PC的IP地址,转换为十进制的IP地址就是:192.168.2.10。
(11) “c0 a8 02 01”,这个是目标地址,也就是DIY_DE2的地址,转换为十进制的IP地址就是:192.168.2.1。
4、TCP包头
TCP包头占有20个字节,即:
18 98 00 17 37 8d 49 3b 00 46 74 e0 50 18 fe d9 ea f7 00 00
(1) “18 98”,表示本地端口号,转换为十进制就是3368。
(2) “00 15”,表示目标端口号,转换为十进制就是23,因为我是连接TELNET站点,所以,这个就是23。
(3) “37 8d 49 3b”,是顺序号(Sequence Number),简写为SEQ。
(4) “00 46 74 e0”,是确认号(Acknowledgment Number),简写为ACKNUM。
(5) “50 18”,转换为二进制,“0101 0000 0001 1000”。这两个字节,总共16bit,有好多东西。第一个4bit“0101”,是TCP头长,十进制为5,表示20个字节。接着的6bit现在TCP协议没有用上,都为0。最后的6bit“01 1000”是六个重要的标志。这是两个计算机数据交流的信息标志。接收和发送断根据这些标志来确定信息流的种类。下面是一些介绍:
URG:(Urgent Pointer field significant)紧急指针。用到的时候值为1,用来处理避免TCP数据流中断。
ACK:(Acknowledgment fieldsignificant)置1时表示确认号(AcknowledgmentNumber)为合法,为0的时候表示数据段不包含确认信息,确认号被忽略。
PSH:(Push Function),PUSH标志的数据,置1时请求的数据段在接收方得到后就可直接送到应用程序,而不必等到缓冲区满时才传送。
RST:(Reset the connection)用于复位因某种原因引起出现的错误连接,也用来拒绝非法数据和请求。如果接收到RST位时候,通常发生了某些错误。
SYN:(Synchronize sequence numbers)用来建立连接,在连接请求中,SYN=1,ACK=0,连接响应时,SYN=1,ACK=1。即,SYN和ACK来区分Connection Request和Connection Accepted。
FIN:(No more data from sender)用来释放连接,表明发送方已经没有数据发送了。
这6个标志位,对号入座。本例中SYN=0,ACK=1,当然就是表示连接请求了。在分析TCP包头时候,要注意这两位的变换。
(6) “fe d9”,窗口值,用来控制实现流量控制。
(7) “ea f7”,检验和,TCP的检验和是强制的。
(8) “00 00”,紧急指针。
TCP包头格式详解
一般来说,网络编程我们只需要调用一些封装好的函数或者组件就能完成大部分的工作,但是一些特殊的情况下,就需要深入的理解
网络数据包的结构,以及协议分析。如:网络监控,故障排查等……
IP包是不安全的,但是它是互联网的基础,在各方面都有广泛的应用。由IP协议衍生的协议族有10数种(据我所知),以后还会出现
更多的基于IP的协议…
先从实际出发吧!
一般我们在谈上网速度的时候,专业上用带宽来描述,其实无论说网速或者带宽都是不准确的,呵呵。比如:1兆,512K……
有些在学校的学生,也许会有疑问,明明我的业务是1M,为什么下载速度到100K就飙不上去了?512K的为什么50多K就封顶了?…
这里所说的1M是指1Mbps = 1 Million Bits Per Second,也就是1M比特每秒,即一秒钟传输1048576个二进制位。我们知道一个字节
是8个二进制位。
好,又来问题了。即便这样子,1M=1048756÷8=131072÷1024=128K。那也应该有128K啊,为什么下载速度还是很少到120K,
110K都谢天谢地了。看完本文,你的帐就对了……
IP数据包结构:
如图,一个刻度表示1个二进制位(比特)。
1-1.版本4位,表示版本号,目前最广泛的是4=B1000,即常说的IPv4;相信IPv6以后会广泛应用,它能给世界上每个纽扣都分配
一个IP地址。
1-2.头长4位,数据包头部长度。它表示数据包头部包括多少个32位长整型,也就是多少个4字节的数据。无选项则为5(红色部分)。
1-3.服务类型,包括8个二进制位,每个位的意义如下:
过程字段:3位,设置了数据包的重要性,取值越大数据越重要,取值范围为:0(正常)~ 7(网络控制)
延迟字段:1位,取值:0(正常)、1(期特低的延迟)
流量字段:1位,取值:0(正常)、1(期特高的流量)
可靠性字段:1位,取值:0(正常)、1(期特高的可靠性)
成本字段:1位,取值:0(正常)、1(期特最小成本)
保留字段:1位 ,未使用
1-4.包裹总长16位,当前数据包的总长度,单位是字节。当然最大只能是65535,及64KB。
2-1.重组标识16位,发送主机赋予的标识,以便接收方进行分片重组。
2-2.标志3位,他们各自的意义如下:
保留段位(2):1位,未使用
不分段位(1):1位,取值:0(允许数据报分段)、1(数据报不能分段)
更多段位(0):1位,取值:0(数据包后面没有包,该包为最后的包)、1(数据包后面有更多的包)
2-3.段偏移量13位,与更多段位组合,帮助接收方组合分段的报文,以字节为单位。
3-1.生存时间8位,经常ping命令看到的TTL(Time To Live)就是这个,每经过一个路由器,该值就减一,到零丢弃。
3-2.协议代码8位,表明使用该包裹的上层协议,如TCP=6,ICMP=1,UDP=17等。
3-3.头检验和16位,是IPv4数据包头部的校验和。
4-1.源始地址,32位4字节,我们常看到的IP是将每个字节用点(.)分开,如此而已。
5-1.目的地址,32位,同上。
6-1.可选选项,主要是给一些特殊的情况使用,往往安全路由会当作攻击而过滤掉,普联(TP_LINK)的TL-ER5110路由就能这么做。
7-1.用户数据。
TCP数据包结构:
1-1.源始端口16位,范围当然是0-65535啦。
1-2.目的端口,同上。
2-1.数据序号32位,TCP为发送的每个字节都编一个号码,这里存储当前数据包数据第一个字节的序号。
3-1.确认序号32位,为了安全,TCP告诉接受者希望他下次接到数据包的第一个字节的序号。
4-1.偏移4位,类似IP,表明数据距包头有多少个32位。
4-2.保留6位,未使用,应置零。
4-3.紧急比特URG—当URG=1时,表明紧急指针字段有效。它告诉系统此报文段中有紧急数据,应尽快传送(相当于高优先级的数据)。
4-3.确认比特ACK—只有当ACK=1时确认号字段才有效。当ACK=0时,确认号无效。参考TCP三次握手
4-4.复位比特RST(Reset) —当RST=1时,表明TCP连接中出现严重差错(如由于主机崩溃或其他原因),必须释放连接,然后再重新
建立运输连接。参考TCP三次握手
4-5.同步比特SYN—同步比特SYN置为1,就表示这是一个连接请求或连接接受报文。参考TCP三次握手
4-6.终止比特FIN(FINal)—用来释放一个连接。当FIN=1时,表明此报文段的发送端的数据已发送完毕,并要求释放运输连接。
4-7.窗口字段16位,窗口字段用来控制对方发送的数据量,单位为字节。TCP连接的一端根据设置的缓存空间大小确定自己的接收窗口
大小,然后通知对方以确定对方的发送窗口的上限。
5-1.包校验和16位,包括首部和数据这两部分。在计算检验和时,要在TCP报文段的前面加上12字节的伪首部。
5-2.紧急指针16位,紧急指针指出在本报文段中的紧急数据的最后一个字节的序号。
6-1.可选选项24位,类似IP,是可选选项。
6-2.填充8位,使选项凑足32位。
7-1.用户数据……
可以看出,每个IP包至少要20字节的头部长度,这些与下载内容无关,加上目前多数传输,包括http协议(就是IE直接下载),都是基于
TCP协议的,所以IP包裹还要从用户数据中扣除20字节的TCP包头,这里已经是40字节,加上其他程序的连接,状态确认等等包裹,因
而算出来要比理论值要小。
另外网络环境(包括稳定因素和传输节点的转发率)也是影响下载速度的重要原因…
TCP/IP协议栈概述及各层包头分析的更多相关文章
- TCP/IP协议栈概述
TCP/IP协议栈概述 这篇文章虽然只是很粗浅的介绍了ISO/OSI 网络模型,但确实把握住了关键点,某种意义上,简单回顾一下就可以加深对TCP/IP协议栈的理解. 原作者:阮一峰 链接: http: ...
- 计算机网络基础之TCP/IP 协议栈
计算机网络基础之TCP/IP 协议栈 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.TCP/IP 协议栈概述 1>.什么是TCP/IP协议栈 Transmission C ...
- TCP/IP协议——TCP/IP协议栈及框架
TCP/IP协议同ISO/OSI模型一样,也可以安排成栈形式.但这个栈不同于ISO/OSI版本,比ISO/OSI栈少,所以又称之为短栈.另外,需要知道的是:TCP/IP协议栈只是许多支持ISO/OSI ...
- linux OSI七层模型、TCP/IP协议栈及每层结构大揭秘
学习Linux,就算是像小编我这样的小萌新,也知道OSI模型.什么?!你不知道!!! 好吧,这篇秘籍拿走,不谢~~~ 一.两个协议 (1)OSI 协议模型(7层)国际协议 PDU:协议数据单元对 ...
- TCP/IP 协议栈4层结构及3次握手4次挥手
TCP/IP 协议栈是一系列网络协议的总和,是构成网络通信的核心骨架,它定义了电子设备如何连入因特网,以及数据如何在它们之间进行传输.TCP/IP 协议采用4层结构,分别是应用层.传输层.网络层和链路 ...
- 嵌入式linux的网络编程(1)--TCP/IP协议概述
嵌入式linux的网络编程(1)--TCP/IP协议概述 1.OSI参考模型及TCP/IP参考模型 通信协议用于协调不同网络设备之间的信息交换,它们建立了设备之间互相识别的信息机制.大家一定都听说过著 ...
- TCP/IP协议栈在Linux内核中的运行时序分析
网络程序设计调研报告 TCP/IP协议栈在Linux内核中的运行时序分析 姓名:柴浩宇 学号:SA20225105 班级:软设1班 2021年1月 调研要求 在深入理解Linux内核任务调度(中断处理 ...
- 【转】TCP/IP协议栈及OSI参考模型详解
OSI参考模型 OSI RM:开放系统互连参考模型(open systeminterconnection reference model) OSI参考模型具有以下优点: 简化了相关的网络操作: 提供设 ...
- TCP/IP协议学习(六) 链路层详解
学习知识很简单,但坚持不懈却又是如此的困难,即使一直对自己说"努力,不能停下"的我也慢慢懈怠了... 闲话不多说,本篇将讲述TCP/IP协议栈的链路层.在本系列第一篇我讲到,TCP ...
随机推荐
- jQuery基础【1】
jQuery 是一个“写的更少,但做的更多”的轻量级 JavaScript 库.jQuery 极大地简化了 JavaScript 编程.jQuery 很容易学习.jQuery 库位于一个 JavaSc ...
- NET 下载共享文件
执行 public static void Run() { "); if (state) { // 共享文件夹的目录 TransportRemoteToLocal(@"\\192. ...
- 【Cocos2d-Js实战教学(1)横版摇杆八方向移动】
本教程主要通过搭建一个横版摇杆八方向移动的实例,让大家如何用Cocos2dx-Js来做一款游戏,从基础了解Cocos2dx-Js的基本实现原理,从创建工程,到各个知识点的梳理. 教程分为上下两讲: 上 ...
- Hbuilder系列索引
『原创』手把手教你搭建一个实用的油耗App(一)
- Zimbra无需登录RCE漏洞利用
2019年3月13号,一名国外的安全研究员在他的博客上公布了zimbra RCE漏洞相关信息,但其中并未提到一些漏洞利用细节. 经过一段时间努力,根据网上各位大牛的分析和我自己的理解,在此我将整个漏洞 ...
- django 模型对象的 update() get_or_create() 的使用
update() 如果一个查询集是一个列表对象, 需要更新该列表对象里所有的单个数据集的数据,可以使用update()方法,而不须遍历整个查询集对象一个个逐一进行修改 obj_list = UserI ...
- SharedFile System Master Slave(共享文件系统)做ActiveMQ集群
WINDOWS环境下:http://www.apache.org/dyn/closer.cgi?path=/activemq/apache-activemq/5.9.0/apache-activemq ...
- ansj分词史上最详细教程
最近的项目需要使用到分词技术.本着不重复造轮子的原则,使用了ansj_seg来进行分词.本文结合博主使用经过,教大家用最快的速度上手使用ansj分词. 1.给ansj来个硬广 项目的github地址: ...
- Storm一致性事物
Storm是一个分布式的流处理系统,利用anchor和ack机制保证所有的tuple都被处理成功.如果tuple出错,则可以被重传,但是如何保证出错的tuple只被处理一次呢?换句话说Storm如何保 ...
- Android之AppWidget
1.Widget设计步骤 需要修改三个XML,一个class: 1)第一个xml是布局XML文件(如:main.xml),是这个widget的.一般来说如果用这个部件显示时间,那就只在这个布局XML中 ...