K - Watermelon Full of Water

Time Limit:3000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu

Appoint description:
 

Description

Watermelon is very popular in the hot summer. Students in ZJU-ICPC Team also love watermelon very much and they hope that they can have watermelon to eat every day during the summer vacation. Suppose there are n days and every day they can buy only one watermelon. The price of watermelon may be different in each day. Besides, sometimes the watermelon they choose to buy may be very big, which means if they buy this watermelon, they will need several days to eat it up. The students want to spend the minimum money to buy enough watermelon so that they can eat watermelon every day. Can you help them?

Notice: When they buy a new watermelon, if they still have an old watermelon, they will throw the old one into dustbin. For example, suppose they buy a watermelon on the fisrt day, and it needs 4 days to eat up the watermelon. But if they buy a new watermelon on the second day and it needs 2 days to eat up the new watermelon, then they will throw the old one, and they have to buy a new watermelon on the fourth day since they don't have any watermelon to eat on that day.

Input

The input contains multiple test cases ( no more than 200 test cases ).
In each test case, first there is an integer, n ( 1 <= n <=50000 ) , which is the number of summer days.
Then there is a line containing n positive integers with the ith integer indicating the price of the watermelon on the ith day.
Finally there is line containing n positive integers with the ith integer indicating the number of days students need to eat up the watermelon bought on the ith day.
All these integers are no more than 100000 and integers are seperated by a space.

Output

For each case, output one line with an integer which is the minimum
money they must spend so that they can have watermelon to eat every day.

Sample Input

4
10 20 1 40
3 2 3 1

Sample Output

11
题意:有n天,每天都可以买西瓜,西瓜有价格和可以吃的时间,同时只能拥有一个西瓜,然后问你最少花费,让自己每天都能吃西瓜
比较普通的DP题,转移方程是当if(last[k]+k-1>i) dp[i]=min(dp[i],dp[k-1]+val[k])
但是普普通通的做会T掉,所以得优先队列优化一下
int p[N],last[N];
long long dp[N];
struct node
{
long val;
int last;
bool operator<(const node& a)const
{
return val>a.val;
}
};
int main()
{
int n;
int i;
while(scanf("%d",&n)!=EOF)
{
for(i=;i<=n;i++)
scanf("%d",&p[i]);
for(i=;i<=n;i++)
scanf("%d",&last[i]);
priority_queue<node> q;
node temp;
dp[]=p[];
temp.val=p[]; temp.last=last[];
q.push(temp);
for(i=;i<=n;i++)
{
temp.val=dp[i-]+p[i];
temp.last=last[i]+i-;
q.push(temp);
while(q.top().last<i) q.pop();
dp[i]=q.top().val;
}
printf("%lld\n",dp[n]);
}
return ;
}
												

ZOJ 3632 K - Watermelon Full of Water 优先队列优化DP的更多相关文章

  1. XJOI3602 邓哲也的矩阵(优先队列优化DP)

    题目描述: 有一个 n×m的矩阵,现在准备对矩阵进行k次操作,每次操作可以二选一 1: 选择一行,给这一行的每一个数减去p,这种操作会得到的快乐值等于操作之前这一行的和 2: 选择一列,给这一列的每一 ...

  2. Atcoder 2566 3N Numbers(优先队列优化DP)

    問題文N を 1 以上の整数とします. 長さ 3N の数列 a=(a1,a2,…,a3N) があります. すぬけ君は.a からちょうど N 個の要素を取り除き.残った 2N 個の要素を元の順序で並べ. ...

  3. 最短路算法模板合集(Dijkstar,Dijkstar(优先队列优化), 多源最短路Floyd)

    再开始前我们先普及一下简单的图论知识 图的保存: 1.邻接矩阵. G[maxn][maxn]; 2.邻接表 邻接表我们有两种方式 (1)vector< Node > G[maxn]; 这个 ...

  4. poj 1511 优先队列优化dijkstra *

    题意:两遍最短路 链接:点我 注意结果用long long #include<cstdio> #include<iostream> #include<algorithm& ...

  5. 【bzo1579】拆点+dijkstra优先队列优化+其他优化

    题意: n个点,m条边,问从1走到n的最短路,其中有K次机会可以让一条路的权值变成0.1≤N≤10000;1≤M≤500000;1≤K≤20 题解: 拆点,一个点拆成K个,分别表示到了这个点时还有多少 ...

  6. hdu 1874(最短路 Dilkstra +优先队列优化+spfa)

    畅通工程续 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  7. ZOJ 3874 Permutation Graph (分治NTT优化DP)

    题面:vjudge传送门 ZOJ传送门 题目大意:给你一个排列,如果两个数构成了逆序对,就在他们之间连一条无向边,这样很多数会构成一个联通块.现在给出联通块内点的编号,求所有可能的排列数 推来推去容易 ...

  8. 晴天小猪历险记之Hill(Dijkstra优先队列优化)

    描述 这一天,他来到了一座深山的山脚下,因为只有这座深山中的一位隐者才知道这种药草的所在.但是上山的路错综复杂,由于小小猪的病情,晴天小猪想找一条需时最少的路到达山顶,但现在它一头雾水,所以向你求助. ...

  9. 地铁 Dijkstra(优先队列优化) 湖南省第12届省赛

    传送门:地铁 思路:拆点,最短路:拆点比较复杂,所以对边进行最短路,spfa会tle,所以改用Dijkstra(优先队列优化) 模板 /******************************** ...

随机推荐

  1. python目前安装的包备份

    Package Version ------------------------------- ------------------ alembic altgraph 0.14 apistar app ...

  2. kworker内核工作队列详解

    工作队列是另一种将工作推后执行的形式,它可以把工作交给一个内核线程去执行,这个下半部是在进程上下文中执行的,因此,它可以重新调度还有睡眠.    区分使用软中断/tasklet还是工作队列比较简单,如 ...

  3. 10 The Go Programming Language Specification go语言规范 重点

    The Go Programming Language Specification go语言规范 Version of May 9, 2018 Introduction 介绍 Notation 符号 ...

  4. mac 删除垃圾篓中的文件

    1.打开终端输入: sudo rm -rf /Volumes/kaid/.Trashes/ 2.输入本机密码

  5. Kaggle案例分析1--Bestbuy

    1. 引言 Kaggle是一个进行数据挖掘和数据分析在线竞赛网站, 成立于2010年. 与Kaggle合作的公司可以提供一个数据+一个问题, 再加上适当的奖励, Kaggle上的计算机科学家和数据科学 ...

  6. tf.sequence_mask

    tf.sequence_mask >>> x=[1,2,3]>>> z=tf.sequence_mask(x)>>> sess.run(z)arr ...

  7. java基础41 枚举(类)

    1.概述 枚举:一些方法在运行时,它需要数据不能是任意的,而必须是一定范围内的值,可以使用枚举解决 2.枚举的格式 enum 类名{ 枚举值 } 例子 package com.dhb.enumerat ...

  8. Elasticsearch零停机时间更新索引配置或迁移索引

    本文介绍Elasticsearch零宕机时间更新索引配置映射内容的方法,包括字段类型.分词器.分片数等.方法原理就是,利用别名机制,给索引配置别名,所有应用程序都通过别名访问索引.重建索引,通过索引原 ...

  9. 一步步教你编写不可维护的 PHP 代码

    译者注:这是一篇很棒文章,使用有趣的叙述方式,从反面讲解了作为一个优秀的 PHP 工程师,有哪些事情是你不能做的.请注意哦,此篇文章罗列的行为,都是你要尽量避免的. 随着失业率越来越高,很多人意识到保 ...

  10. EXEC与sp_executesql的区别及应用

    在项目中需要将内部DECLARE的参数通过EXEC赋值后再作为下面一个EXEC参数的时候,发现都使用EXEC时,问题就不是那么简单了.趁着没有睡意研究下.EXEC的使用与缺点EXEC命令有两种用法,一 ...