【题目大意】

n头牛从小到大排,它们之间某些距离不能大于一个值,某些距离不能小于一个值,求第一头牛和第N头牛之间距离的最大值。

【思路】

由题意可以得到以下不等式d[AL]+DL≥d[BL];d[BD]+(-DD)≥d[AD];d[i+1]+0≥d[i],显然是差分约束系统。即构造从AL到BL权值为DL的边,从BD到AD构造权值为-DD的负边,从i+1到i构造权值为0的边。最后求最短路径。安利一个证明(点我)。

对于差分约束系统要注意的是,如果要求最大距离,用最短路径;求最小距离,用最长路径,要根据实际情况判断。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int MAXN=+;
struct Rec
{
int ori,des,len;
};
int n,ml,md;
int first[MAXN/],next[MAXN*+];
Rec edge[MAXN*+];
int vis[MAXN/],dis[MAXN/],appear[MAXN/]; void init()
{
memset(first,-,sizeof(first));
scanf("%d%d%d",&n,&ml,&md);
int j=-;
for (int i=;i<ml;i++)
{
j++;
scanf("%d%d%d",&edge[j].ori,&edge[j].des,&edge[j].len);
edge[j].ori--;edge[j].des--;
next[j]=first[edge[j].ori];
first[edge[j].ori]=j;
}
for (int i=;i<md;i++)
{
j++;
scanf("%d%d%d",&edge[j].des,&edge[j].ori,&edge[j].len);
edge[j].ori--;edge[j].des--;
edge[j].len=-edge[j].len;
next[j]=first[edge[j].ori];
first[edge[j].ori]=j;
}
for (int i=;i<n;i++)
{
j++;
edge[j].ori=i;edge[j].des=i-;edge[j].len=;
next[j]=first[edge[j].ori];
first[edge[j].ori]=j;
}
} void SPFA()
{
queue<int> que;
memset(vis,,sizeof(vis));
memset(appear,,sizeof(appear));
for (int i=;i<n;i++) dis[i]=0x7fffffff;
dis[]=;
que.push();
vis[]=;
appear[]++; while (!que.empty())
{
int head=que.front();
int k=first[head];
while (k!=-)
{
Rec e=edge[k];
if (dis[e.des]>dis[e.ori]+e.len)
{
dis[e.des]=dis[e.ori]+e.len;
if (!vis[e.des])
{
appear[e.des]++;
if (appear[e.des]>n)
{
cout<<-<<endl;
return;
}
que.push(e.des);
vis[e.des]=;
}
}
k=next[k];
}
vis[head]=;
que.pop();
}
if (dis[n-]==0x7fffffff) cout<<-<<endl; else cout<<dis[n-]<<endl;
} int main()
{
init();
SPFA();
system("pause");
return ;
}

【差分约束系统/SPFA】POJ3169-Layout的更多相关文章

  1. 差分约束系统 + spfa(A - Layout POJ - 3169)

    题目链接:https://cn.vjudge.net/contest/276233#problem/A 差分约束系统,假设当前有三个不等式 x- y <=t1 y-z<=t2 x-z< ...

  2. BZOJ 2330 [SCOI2011]糖果 ——差分约束系统 SPFA

    最小值求最长路. 最大值求最短路. 发现每个约束条件可以转化为一条边,表示一个点到另外一个点至少要加上一个定值. 限定了每一个值得取值下界,然后最长路求出答案即可. 差分约束系统,感觉上更像是两个变量 ...

  3. 差分约束系统 POJ 3169 Layout

    题目传送门 题意:有两种关系,n牛按照序号排列,A1到B1的距离不超过C1, A2到B2的距离不小于C2,问1到n的距离最大是多少.如果无限的话是-2, 如果无解是-1 分析:第一种可以写这样的方程: ...

  4. 差分约束系统+spfa(B - World Exhibition HDU - 3592 )

    题目链接:https://cn.vjudge.net/contest/276233#problem/B 思路和上一个一样,不过注意点有两个,第一,对dis数组进行初始化的时候,应该初始化成ox3f3f ...

  5. PKU 1201 Intervals(差分约束系统+Spfa)

    题目大意:原题链接 构造一个集合,这个集合内的数字满足所给的n个条件,每个条件都是指在区间[a,b]内至少有c个数在集合内.问集合最少包含多少个点.即求至少有多少个元素在区间[a,b]内. 解题思路: ...

  6. POJ3169 Layout

    Description Like everyone else, cows like to stand close to their friends when queuing for feed. FJ ...

  7. ACM/ICPC 之 差分约束系统两道(ZOJ2770-POJ1201)

    当对问题建立数学模型后,发现其是一个差分方程组,那么问题可以转换为最短路问题,一下分别选用Bellmanford-SPFA解题 ZOJ2770-Burn the Linked Camp //差分约束方 ...

  8. POJ-3169 Layout (差分约束+SPFA)

    POJ-3169 Layout:http://poj.org/problem?id=3169 参考:https://blog.csdn.net/islittlehappy/article/detail ...

  9. POJ3169 Layout(差分约束系统)

    POJ3169 Layout 题意: n头牛编号为1到n,按照编号的顺序排成一列,每两头牛的之间的距离 >= 0.这些牛的距离存在着一些约束关系:1.有ml组(u, v, w)的约束关系,表示牛 ...

随机推荐

  1. 一个罕见的MSSQL注入漏洞案例

    一个罕见的MSSQL注入漏洞案例 这里作者准备分享一个在去年Google赏金计划中发现的相当罕见漏洞,也是作者在整个渗透测试生涯中唯一一次遇到的. 目标网站使用了微软 SQL Server 数据库并且 ...

  2. POI读取Excel数据保存到数据库,并反馈给用户处理信息(导入带模板的数据)

    今天遇到这么一个需求,将课程信息以Excel的形式导入数据库,并且课程编号再数据库中不能重复,也就是我们需要先读取Excel提取信息之后保存到数据库,并将处理的信息反馈给用户.于是想到了POI读取文件 ...

  3. HTTP之一 If-Modified-Since & If-None-Match

    If-Modified-Since & If-None-MatchIf-Modified-Since,和 Last-Modified 一样都是用于记录页面最后修改时间的 HTTP 头信息,只是 ...

  4. ubuntu 16.04 网卡配置 虚拟机上网

    看所有网卡(包括未启动的) ifconfig -a 或者 ip link 查看当前网卡配置,打开配置文件/etc/network/interfaces 设置静态IP(dhcp 为动态获取,static ...

  5. SHELL 中的变量

    变量的分类 系统环境变量 系统本身所有,通常为大写字母 系统变量通过 set 或 declare 指令进行查看 UDV 变量(user defined variable ) 用户创建和维护,建议大写 ...

  6. java基础46 IO流技术(输出字符流/缓冲输出字符流)

    一.输出字符流 1.1.输出字符流体系 --------| Writer:输出字符流的基类(抽象类)  ----------| FileWriter:向文件输出数据输出字符流(把程序中的数据写到硬盘中 ...

  7. 使用html+css+js实现计算器

    使用html+css+js实现计算器,开启你的计算之旅吧 效果图: 代码如下,复制即可使用: <!DOCTYPE html><html lang="en"> ...

  8. JS、JQ实现焦点图轮播效果

    JS实现焦点图轮播效果 效果图: 代码如下,复制即可使用: (不过里面的图片路径需要自己改成自己的图片路径,否则是没有图片显示的哦) <!DOCTYPE html> <html> ...

  9. hibernate cascade

    默认:none Cascade 属性值: none:在保存.删除修改对象的时候,不考虑其附属物的操作 save-update:在保存.更新当前对象时,级联保存.更新附属物. delete:在删除当前对 ...

  10. 组件化表单解决方案AForm 1.3 发布

    v1.3 更新日志 输入控件的实现改为实例化模式,同类型多个输入控件在同一个表单不会冲突 输入控件实现了继承 可以使用AForm.create创建表单,和使用new AForm创建实例的参数和结果一样 ...