P2657 [SCOI2009]windy数

题目描述

windy定义了一种windy数。不含前导零且相邻两个数字之差至少为2的正整数被称为windy数。 windy想知道,

在A和B之间,包括A和B,总共有多少个windy数?

Solution

有先导 \(0\) 的数位\(dp\)

把此位前有无前导 \(0\) 作为搜索的一个状态即可

注意有前导 \(0\) 时不能直接返回, 因为有前导 \(0\) 就代表着无法到达 \(10^{len} - 1\)

Code

#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
#include<climits>
#define LL long long
#define REP(i, x, y) for(LL i = (x);i <= (y);i++)
using namespace std;
LL RD(){
LL out = 0,flag = 1;char c = getchar();
while(c < '0' || c >'9'){if(c == '-')flag = -1;c = getchar();}
while(c >= '0' && c <= '9'){out = out * 10 + c - '0';c = getchar();}
return flag * out;
}
const LL maxn = 19;
LL num[maxn];
LL dp[maxn][maxn];
LL DP(LL Index, LL state, LL zero, bool limit){
if(Index == 0)return 1;
if(!zero && !limit && dp[Index][state] != -1)return dp[Index][state];
LL ans = 0, up = limit ? num[Index] : 9;
REP(i, 0, up){
if(zero)ans += DP(Index - 1, i, i == 0, limit && (i == num[Index]));
else{
if(abs(i - state) < 2)continue;
ans += DP(Index - 1, i, 0, limit && (i == num[Index]));
}
}
if(!zero && !limit)dp[Index][state] = ans;
return ans;
}
LL solve(LL x){
LL len = 0;
while(x){
num[++len] = x % 10;
x /= 10;
}
return DP(len, 0, 1, 1);
}
int main(){
memset(dp, -1, sizeof(dp));
LL l = RD(), r = RD();
printf("%lld\n", solve(r) - solve(l - 1));
return 0;
}

P2657 [SCOI2009]windy数的更多相关文章

  1. luogu P2657 [SCOI2009]windy数 数位dp 记忆化搜索

    题目链接 luogu P2657 [SCOI2009]windy数 题解 我有了一种所有数位dp都能用记忆话搜索水的错觉 代码 #include<cstdio> #include<a ...

  2. 洛谷 P2657 [SCOI2009]windy数 解题报告

    P2657 [SCOI2009]windy数 题目描述 \(\tt{windy}\)定义了一种\(\tt{windy}\)数.不含前导零且相邻两个数字之差至少为\(2\)的正整数被称为\(\tt{wi ...

  3. 洛谷——P2657 [SCOI2009]windy数

    P2657 [SCOI2009]windy数 题目大意: windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道, 在A和B之间,包括A和 ...

  4. C++ 洛谷 P2657 [SCOI2009]windy数 题解

    P2657 [SCOI2009]windy数 同步数位DP 这题还是很简单的啦(差点没做出来 个位打表大佬请离开(包括记搜),我这里讲的是DP!!! 首先Cal(b+1)-Cal(a),大家都懂吧(算 ...

  5. 洛谷P2657 [SCOI2009]windy数 [数位DP,记忆化搜索]

    题目传送门 windy数 题目描述 windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道, 在A和B之间,包括A和B,总共有多少个win ...

  6. Luogu P2657 [SCOI2009]windy数

    一道比较基础的数位DP,还是挺套路的. 首先看题,发现这个性质和数的大小无关,因此我们可以直接数位DP,经典起手式: \(f[a,b]=f(b)-f(a-1)\) 然后考虑如何求解\(f(x)\).我 ...

  7. [洛谷P2657][SCOI2009]windy数

    题目大意:不含前导零且相邻两个数字之差至少为$2$的正整数被称为$windy$数.问$[A, B]$内有多少个$windy$数? 题解:$f_{i, j}$表示数有$i$位,最高位为$j$(可能为$0 ...

  8. P2657 [SCOI2009]windy数 数位dp

    数位dp之前完全没接触过,所以NOIP之前搞一下.数位dp就是一种dp,emm……用来求解区间[L,R]内满足某个性质的数的个数,且这个性质与数的大小无关. 在这道题中,dp[i][j]代表考虑了i位 ...

  9. 题解 BZOJ1026 & luogu P2657 [SCOI2009]windy数 数位DP

    BZOJ & luogu 看到某大佬AC,本蒟蒻也决定学习一下玄学的数位$dp$ (以上是今年3月写的话(叫我鸽神$qwq$)) 思路:数位$DP$ 提交:2次 题解:(见代码) #inclu ...

随机推荐

  1. 《校友聊—方便使用之NABCD》

    <校友聊—方便使用之NABCD> 方便使用特点的分析与总结: N:由于一些软件的人机交互性很差,人性化性能低,使用不方便,故,鉴于此需求:A:用户可根据系统界面的友好提示一步步进行:B:提 ...

  2. C#窗体——四则运算

    用户需求:程序能接收用户输入的整数答案,并判断对错程序结束时,统计出答对.答错的题目数量.补充说明:0——10的整数是随机生成的用户可以选择四则运算中的一种用户可以结束程序的运行,并显示统计结果.在此 ...

  3. python实现树莓派开机自动发送IP到指定邮箱

    #!/usr/bin/python # -*- coding:UTF-8 -*- #测试发送邮件163邮箱发送到qq邮箱 import smtplib from email.mime.text imp ...

  4. mvc 路由配置-学习2

    public class RouteConfig {    public static void RegisterRoutes(RouteCollection routes)    {       r ...

  5. Aspose 插件

    百度:Aspose Aspose.Cells.dll Aspose.Slides.dll Aspose.Words.dll

  6. p4 : a problem about "./behavioral-model"

    当sudo ./behavioral-moel时候会发生这个 这个时候记得要先在 p4factory目录下先执行一下这个 sudo ./tools/veth_setuo.sh 再去执行sudo ./b ...

  7. SqlHelper类的编写

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.D ...

  8. HighCharts点击柱形或饼块等加URL或Click事件

    我们在做图表的时候,有时候需要在单个数据上加链接或点击事件,是在plotOptions里的events里设置的: 如下代码: plotOptions: { pie: { cursor: 'pointe ...

  9. js中__proto__和prototype的区别和关系? 这样好理解多了

    原型的概念 真正理解什么是原型是学习原型理论的关键.很多人在此产生了混淆,没有真正理解,自然后续疑惑更多. 首先,我们明确原型是一个对象,其次,最重要的是, Every function has a ...

  10. 开发模式 MVC、MVP、MVVM和MVX框架模式

    MVX框架模式的了解 MVX框架模式:MVC+MVP+MVVM 1.MVC: Model(模型)+View(视图)+controller(控制器),主要是基于分层的目的,让彼此的职责分开.View通过 ...