P2657 [SCOI2009]windy数

题目描述

windy定义了一种windy数。不含前导零且相邻两个数字之差至少为2的正整数被称为windy数。 windy想知道,

在A和B之间,包括A和B,总共有多少个windy数?

Solution

有先导 \(0\) 的数位\(dp\)

把此位前有无前导 \(0\) 作为搜索的一个状态即可

注意有前导 \(0\) 时不能直接返回, 因为有前导 \(0\) 就代表着无法到达 \(10^{len} - 1\)

Code

#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
#include<climits>
#define LL long long
#define REP(i, x, y) for(LL i = (x);i <= (y);i++)
using namespace std;
LL RD(){
LL out = 0,flag = 1;char c = getchar();
while(c < '0' || c >'9'){if(c == '-')flag = -1;c = getchar();}
while(c >= '0' && c <= '9'){out = out * 10 + c - '0';c = getchar();}
return flag * out;
}
const LL maxn = 19;
LL num[maxn];
LL dp[maxn][maxn];
LL DP(LL Index, LL state, LL zero, bool limit){
if(Index == 0)return 1;
if(!zero && !limit && dp[Index][state] != -1)return dp[Index][state];
LL ans = 0, up = limit ? num[Index] : 9;
REP(i, 0, up){
if(zero)ans += DP(Index - 1, i, i == 0, limit && (i == num[Index]));
else{
if(abs(i - state) < 2)continue;
ans += DP(Index - 1, i, 0, limit && (i == num[Index]));
}
}
if(!zero && !limit)dp[Index][state] = ans;
return ans;
}
LL solve(LL x){
LL len = 0;
while(x){
num[++len] = x % 10;
x /= 10;
}
return DP(len, 0, 1, 1);
}
int main(){
memset(dp, -1, sizeof(dp));
LL l = RD(), r = RD();
printf("%lld\n", solve(r) - solve(l - 1));
return 0;
}

P2657 [SCOI2009]windy数的更多相关文章

  1. luogu P2657 [SCOI2009]windy数 数位dp 记忆化搜索

    题目链接 luogu P2657 [SCOI2009]windy数 题解 我有了一种所有数位dp都能用记忆话搜索水的错觉 代码 #include<cstdio> #include<a ...

  2. 洛谷 P2657 [SCOI2009]windy数 解题报告

    P2657 [SCOI2009]windy数 题目描述 \(\tt{windy}\)定义了一种\(\tt{windy}\)数.不含前导零且相邻两个数字之差至少为\(2\)的正整数被称为\(\tt{wi ...

  3. 洛谷——P2657 [SCOI2009]windy数

    P2657 [SCOI2009]windy数 题目大意: windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道, 在A和B之间,包括A和 ...

  4. C++ 洛谷 P2657 [SCOI2009]windy数 题解

    P2657 [SCOI2009]windy数 同步数位DP 这题还是很简单的啦(差点没做出来 个位打表大佬请离开(包括记搜),我这里讲的是DP!!! 首先Cal(b+1)-Cal(a),大家都懂吧(算 ...

  5. 洛谷P2657 [SCOI2009]windy数 [数位DP,记忆化搜索]

    题目传送门 windy数 题目描述 windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道, 在A和B之间,包括A和B,总共有多少个win ...

  6. Luogu P2657 [SCOI2009]windy数

    一道比较基础的数位DP,还是挺套路的. 首先看题,发现这个性质和数的大小无关,因此我们可以直接数位DP,经典起手式: \(f[a,b]=f(b)-f(a-1)\) 然后考虑如何求解\(f(x)\).我 ...

  7. [洛谷P2657][SCOI2009]windy数

    题目大意:不含前导零且相邻两个数字之差至少为$2$的正整数被称为$windy$数.问$[A, B]$内有多少个$windy$数? 题解:$f_{i, j}$表示数有$i$位,最高位为$j$(可能为$0 ...

  8. P2657 [SCOI2009]windy数 数位dp

    数位dp之前完全没接触过,所以NOIP之前搞一下.数位dp就是一种dp,emm……用来求解区间[L,R]内满足某个性质的数的个数,且这个性质与数的大小无关. 在这道题中,dp[i][j]代表考虑了i位 ...

  9. 题解 BZOJ1026 & luogu P2657 [SCOI2009]windy数 数位DP

    BZOJ & luogu 看到某大佬AC,本蒟蒻也决定学习一下玄学的数位$dp$ (以上是今年3月写的话(叫我鸽神$qwq$)) 思路:数位$DP$ 提交:2次 题解:(见代码) #inclu ...

随机推荐

  1. Final发布文案+美工

    团队名称:探路者 1蔺依铭:http://www.cnblogs.com/linym762/(组长) 2张恩聚:http://www.cnblogs.com/zej87/ 3米赫:http://www ...

  2. java实验五实验报告

    一.实验内容 Cmp传输与加解密 结对编程,一人服务器,一人客户端,服务器向客户端发送经RSA加密的密钥和用密钥加密的密文(使用DES算法),客户端负责接收加密后的密钥和密文,并解密得出明文. 二.实 ...

  3. React环境配置(第一个React项目)

    使用Webpack构建React项目 1. 使用NPM配置React环境 NPM及React安装自行百度 首先创建一个文件夹,the_first_React 进入到创建好的目录,npm init,然后 ...

  4. 2018软工实践—Beta冲刺(6)

    队名 火箭少男100 组长博客 林燊大哥 作业博客 Beta 冲鸭鸭鸭! 成员冲刺阶段情况 林燊(组长) 过去两天完成了哪些任务 协调组内工作 最终测试文稿编写 展示GitHub当日代码/文档签入记录 ...

  5. Leetcode题库——35.搜索插入位置

    @author: ZZQ @software: PyCharm @file: searchInsert.py @time: 2018/11/07 19:20 要求:给定一个排序数组和一个目标值,在数组 ...

  6. 材料设计---Design

    效果: main_activity.xml <?xml version="1.0" encoding="utf-8"?> <!--Coordi ...

  7. linux yum 下载至本地及使用本地缓存安装包

    由于网络安全的原因,服务器不允许上公网,有2种方案,解决这个问题 1.搭建yum服务器2.使用yum下载缓存进行封装,然后使用缓存安装 这里讲讲使用yum缓存封装 一.下载指定包及相关依赖 yum i ...

  8. 使用userData兼容IE6-10,chrome,FF 及360等浏览器的本地存储

    开发过程中涉及本地存储的使用,IE很多版本都不支持localStorage,没办法,就得兼容使用userData了.废话不说了,看代码: (function(window){var LS;(funct ...

  9. 字符串(string)与整型(int)、浮点型(float)等之间的转换

    #include <stdlib.h> 1.int/float to string/array: C语言提供了几个标准库函数,可以将任意类型(整型.长整型.浮点型等)的数字转换为字符串,下 ...

  10. 数据结构之二叉树java实现

    二叉树是一种非线性数据结构,属于树结构,最大的特点就是度为2,也就是每个节点只有一个左子树和一个右子树.二叉树的操作主要为创建,先序遍历,中序遍历,后序遍历.还有层次遍历.遍历有两种方式,一是采用递归 ...