poj 2125 Destroying The Graph (最小点权覆盖)
Time Limit: 2000MS | Memory Limit: 65536K | |||
Description
Alice assigns two costs to each vertex: Wi+ and Wi-. If Bob removes all arcs incoming into the i-th vertex he pays Wi+ dollars to Alice, and if he removes outgoing arcs he pays Wi- dollars.
Find out what minimal sum Bob needs to remove all arcs from the graph.
Input
Output
Sample Input
3 6
1 2 3
4 2 1
1 2
1 1
3 2
1 2
3 1
2 3
Sample Output
5
3
1 +
2 -
2 +
题目大意:
n个点m条边的有向图
需要移走这张图里所有的边
每次可以选择移走点i的所有入边或所有出边
每步操作都有对应的代价
求最小代价移走所有的边
注:边有自环和平行边 最小点权覆盖集
=最小割
拆点
源点向每个点连一条流量为outgoing pay的边
每个点向汇点连一条流量为incoming pay的边
原图中的边i,j,由i向拆出的j连inf边
跑最小割
方案的输出:
从源点遍历残量网络,边还有流量就遍历,记录所有遍历到的点
原本就有的点,如果没有被遍历到,就说明它被割了
拆出的点,如果被遍历到,说明它被割了
#include<cstdio>
#include<queue>
using namespace std;
int n,m,tot=,ans;
int front[],to[],nextt[],cap[];
int lev[],cur[];
int src,decc;
bool g[];
queue<int>q;
void add(int u,int v,int w)
{
to[++tot]=v;nextt[tot]=front[u];front[u]=tot;cap[tot]=w;
to[++tot]=u;nextt[tot]=front[v];front[v]=tot;cap[tot]=;
}
bool bfs()
{
for(int i=;i<=decc;i++) {lev[i]=-;cur[i]=front[i];}
while(!q.empty()) q.pop();
q.push(src);lev[src]=;
while(!q.empty())
{
int now=q.front();q.pop();
for(int i=front[now];i;i=nextt[i])
{
int t=to[i];
if(cap[i]>&&lev[t]==-)
{
lev[t]=lev[now]+;
q.push(t);
if(t==decc) return true;
}
}
}
return false;
}
int dinic(int now,int flow)
{
if(now==decc) return flow;
int rest=,delta;
for(int & i=cur[now];i;i=nextt[i])
{
int t=to[i];
if(lev[t]>lev[now]&&cap[i]>)
{
delta=dinic(t,min(flow-rest,cap[i]));
if(delta)
{
cap[i]-=delta;cap[i^]+=delta;
rest+=delta;if(rest==flow) break;
}
}
}
if(rest!=flow) lev[now]=-;
return rest;
}
void cut(int now)
{
g[now]=true;
for(int i=front[now];i;i=nextt[i])
{
if(cap[i]==||g[to[i]]) continue;
cut(to[i]);
}
}
int main()
{
scanf("%d%d",&n,&m);
decc=n+<<;
int x,y;
for(int i=;i<=n;i++)
{
scanf("%d",&x);
add(i<<|,decc,x);
}
for(int i=;i<=n;i++)
{
scanf("%d",&x);
add(src,i<<,x);
}
for(int i=;i<=m;i++)
{
scanf("%d%d",&x,&y);
add(x<<,y<<|,2e9);
}
while(bfs()) ans+=dinic(src,2e9);
printf("%d\n",ans);
int sum=;
cut(src);
for(int i=;i<=n;i++)
{
if(g[i<<|]) sum++;
if(!g[i<<]) sum++;
}
printf("%d\n",sum);
for(int i=;i<=n;i++)
{
if(!g[i<<]) printf("%d -\n",i);
if(g[i<<|]) printf("%d +\n",i); }
}
错误:
1、
应该是
源点向每个点连一条流量为outgoing pay的边
每个点向汇点连一条流量为incoming pay的边
连反了
与源点相连的点,连出去的边是点打出的,所以源点与点之间的边控制的是出边的流量
汇点同理
2、方案输出方法错误
错误方法:
在残量网络中,如果与源点相连的边流量为0,说明这个点被割了
如果汇点连出去的边的流量 为这条边指 向的点的原流量,说明这个点被割了
前半部分是正确的,但后半部分是错的
因为跑最大流过程中,增光路上所有边流量都减,
比如有一条边由1指向2,所有花费都是1
跑完最大流后,源点——1 残量为0
2——汇点 残量为0
最终判断的是割掉2个点,但实际割其中一个就行
/*for(int i=front[src];i;i=nextt[i])
{
if(cap[i]==0)
{
sum++;
a[sum][0]=to[i]/2;a[sum][1]='+';
}
}
for(int i=front[decc];i;i=nextt[i])
{
if(cap[i]==out[to[i]/2])
{
sum++;
a[sum][0]=to[i]/2;a[sum][1]='-';
}
}*/
错误代码
3、题目中说有自环,做的时候把它特判去掉了,错
poj 2125 Destroying The Graph (最小点权覆盖)的更多相关文章
- POJ - 2125 Destroying The Graph (最小点权覆盖)
题意:给一张图,现在要删去所有的边,删去一个点的所有入边和所有出边都有其对应\(W_{i+}\)和\(W_{i-}\).求删去该图的最小花费,并输出解 分析:简而言之就是用最小权值的点集去覆盖所有的边 ...
- POJ2125 Destroying The Graph (最小点权覆盖集)(网络流最小割)
Destroying The Graph Time Limit: 2000MS Memo ...
- POJ 2125 Destroying The Graph [最小割 打印方案]
Destroying The Graph Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 8311 Accepted: 2 ...
- poj 2125 Destroying The Graph 最小割+方案输出
构图思路: 1.将所有顶点v拆成两个点, v1,v2 2.源点S与v1连边,容量为 W- 3.v2与汇点连边,容量为 W+ 4.对图中原边( a, b ), 连边 (a1,b2),容量为正无穷大 则该 ...
- POJ 2125 Destroying the Graph 二分图最小点权覆盖
Destroying The Graph Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 8198 Accepted: 2 ...
- POJ 2125 Destroying The Graph (二分图最小点权覆盖集+输出最小割方案)
题意 有一个图, 两种操作,一种是删除某点的所有出边,一种是删除某点的所有入边,各个点的不同操作分别有一个花费,现在我们想把这个图的边都删除掉,需要的最小花费是多少. 思路 很明显的二分图最小点权覆盖 ...
- POJ 2125 Destroying The Graph 二分图 最小点权覆盖
POJ2125 题意简述:给定一个有向图,要通过某些操作删除所有的边,每一次操作可以选择任意一个节点删除由其出发的所有边或者通向它的所有边,两个方向有不同的权值.问最小权值和的解决方案,要输出操作. ...
- POJ 3308 Paratroopers (对数转换+最小点权覆盖)
题意 敌人侵略r*c的地图.为了消灭敌人,可以在某一行或者某一列安置超级大炮.每一个大炮可以瞬间消灭这一行(或者列)的敌人.安装消灭第i行的大炮消费是ri.安装消灭第j行的大炮消费是ci现在有n个敌人 ...
- poj 3308 Paratroopers(二分图最小点权覆盖)
Paratroopers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8954 Accepted: 2702 Desc ...
随机推荐
- Results the mutual for the first time(alpha阶段总结)
由于前天听大家的成果展时,做得笔记不够完善,有一两个组找不到信息,如果没有评到的组望谅解. 分数分配: 由于组内某些原因,我们现重新分组: 试用版: 总结前阶段的工作: 在前一段时间,我们第一个spr ...
- ThoughtWorks.QRCode类库
ThoughtWorks.QRCode一个二维码生成类库.
- js作用域相关笔记
1.js引擎.编译器.作用域. 引擎:负责JS全过程的编译和执行: 编译器:负责语法分析和代码生成: 作用域:负责收集并维护声明组成的查询,以及当前执行代码对这些变量的访问权限(简言之,作用域就是用于 ...
- PAT 甲级 1154 Vertex Coloring
https://pintia.cn/problem-sets/994805342720868352/problems/1071785301894295552 A proper vertex color ...
- python读取文件解码失败
python2.7 urllib2 抓取新浪乱码 中的: 报错的异常是 UnicodeDecodeError: 'gbk' codec can't decode bytes in position 2 ...
- docker weave安装
1.升级内核到3.10.0以上,安装iproute22.安装 0.80版本:#wget -O /usr/local/bin/weave https://raw.githubusercontent.co ...
- js遍历数组和遍历对象
可以用for in来遍历对象,具体内容如下: <script type="text/javascript"> var objs = { ...
- Java IO流学习总结 - BIO
Java流操作有关的类或接口: Java流类图结构: 流的概念和作用 流是一组有顺序的,有起点和终点的字节集合,是对数据传输的总称或抽象.即数据在两设备间的传输称为流,流的本质是数据传输,根据数据 ...
- laravel4 「时间戳」问题
默认 Eloquent 会自动维护数据库表的 created_at 和 updated_at 字段.只要把这两个「时间戳」字段加到数据库表, Eloquent 就会处理剩下的工作.如果不想让 Eloq ...
- 【刷题】BZOJ 5008 方师傅的房子
Description 方师傅来到了一个二维平面.他站在原点上,觉得这里风景不错,就建了一个房子.这个房子是n个点的凸多边形 ,原点一定严格在凸多边形内部.有m个人也到了这个二维平面.现在你得到了m个 ...