linux arm mmu基础【转】
转自:http://blog.csdn.net/xiaojsj111/article/details/11065717
ARM MMU页表框架
先上一张arm mmu的页表结构的通用框图(以下的论述都由该图来逐渐展开):
以上是arm的页表框图的典型结构:即是二级页表结构:
其中第一级页表(L1)是由虚拟地址的高12bit(bits[31:20])组成,所以第一级页表有4096个item,每个item占4个字节,所以一级页表的大小为16KB,而在第一级页表中的每个entry的最低2bit可以用来区分具体是什么种类的页表项,2bit可以区分4种页表项,具体每种页表项的结构如下:
简而言之L1页表的页表项主要有两大类:
第一大类是指向第二级页表(L2页表)的基地址;
第二类直接指向1MB的物理内存。
在L1页表中每个表项可以覆盖1MB的内存,由于有4096K个选项(item),所以总计可以覆盖4096K*1MB=4GB的内存空间。
具体对应到linux,由于linux的软件架构是支持3级页表结构,而arm架构实际只有2级的页表结构,所以linux代码中的中间级页表的实现是空的。在linux代码中,第一级的页表的页目录表项用pgd表示,中间级的页表的页目录表项用pud表示(arm架构其实不需要),第三级的页表的页目录表项用pmd表示(由于中间pud是空的,所以pgd=pmd),另外目前arm体系的移动设备中RAM的page大小一般都是4KB/page,所以L1页表中的页表项都是指向fine
page table的。
但在linux内核启动的初始化阶段,临时建立页表(initial
page tables)以供linux内核初始化提供执行环境,这时L1的页表项使用的就是第二种页表项(section
enty),他直接映射的是1M的内存空间。具体的可以参考arch/arm/kernel/head.S中的__create_page_tables函数,限于篇幅,这里就不展开说了。
针对这种section page translation,mmu硬件执行虚拟地址转物理地址的过程如下:
以上在初始化过程使用的临时页表(initial
page
tables),在内核启动的后期会被覆盖掉,即在paging_init--->map_lowmem函数中会重新建立页表,该函数为物理内存从0地址到低端内存(lowmem_limit)建立一个一一映射的映射表。所谓的一一映射就是物理地址和虚拟地址就差一个固定的偏移量,该偏移量一般就是0xc0000000(呵呵,为什么是0xc0000000?)
说到这里引入一个重要的概念,就是与低端内存相对的高端内存,什么是高端内存?为什么需要高端内存?为了解析这个问题,我们假设我们使用的物理内存有2GB大小,另外由于我们内核空间的地址范围是从3G-4G的空间,并且前面也说到了,linux内核的低端内存空间都是一一映射的,如果不引入高端内存这个概念,全部都使用一一映射的方式,那内核只能访问到1GB的物理内存,但实际上,我们是需要内核在内核空间能够访问所有的4GB的内存大小的,那怎么做到呢?
方法就是我们不让3G-4G的空间都使用一一映射,而是将物理地址的[0x00,fix_addr](fix_addr<1GB)映射到内核空间虚拟地址[0x00+3G,fix_addr+3G],然后将[fix_addr+3G,4G]这段空间保留下来用于动态映射,这样我们可以通过这段虚拟地址来访问从fix_addr到4GB的物理内存空间。怎么做到的呢?
譬如我们想要访问物理地址[fix_addr,4GB]这段区间中的任何一段,我就用宝贵的内核虚拟地址[fix_addr+3G,4G]的一段去映射他,建立好mmu硬件使用的页表,访问完后,将映射清除,将内核的这段虚拟地址释放,以供下次访问其他的物理内存使用。这样就可以达到访问所有4GB的物理内存的目的。
那么内核代码是如何建立映射表的呢?
我们着重从arch/arm/mm/mmu.c中的create_mapping函数来分析。在分析之前我们先看下arm mmu硬件是如何在二级页表结构中,实现虚拟地址转物理地址的。
先贴出原代码(arch/arm/mm/mmu.c):
该函数的功能描述如下:
Create the page directory entries and any necessary
page tables for the mapping specified by `md'. We
are able to cope here with varying sizes and address
offsets, and we take full advantage of sections and
supersections.
line737-line742:参数合法性检查,该函数不为用户空间的虚拟地址建立映射表(记得多问自己一个为什么?)
line744-line750:如果是iomemory,则映射的虚拟地址范围应属于高端内存区间,由于我们这里是常规的memory,即type为MT_MEMORY,所以不会进入该分支
line775:
获得该虚拟地址addr属于第一级页表(L1)的哪个表项,详细跟踪pgd_offset_k函数(定义在:arch/arm/include/asm/pgtable.h),你会发现,我们内核的L1页目录表的基地址位于0xc0004000,而我们的内核代码则是放置在0xc0008000开始的位置。而从0xc0004000到0xc0008000区间大小是16KB,刚好就是L1页表的大小(见文章开头的描述)
在这里需要注意一个概念:内核的页目录表项和进程的页目录表项,内核的页目录表项是对系统所有进程都是公共的;而进程的页目录表项则是跟特定进程相关的,每个应用进程都有自己的页目录表项,但各个进程对应的内核空间的页目录表相都是一样的。正是由于每个进程都有自己的页目录表相,所以才能做到每个进程都可以独立拥有属于自己的[0,3GB]的内存空间。
line778 pgd_addr_end()确保[addr,next]地址不会跨越一个L1表项所能映射的最大内存空间2MB(为什么是2MB而不是1MB呢?这个是linux的一个处理技巧,以后再详细展开说)
line780 alloc_init_pud()函数为定位到的L1页目录表项pgd所指向的二级页表(L2)建立映射表
line784 pdg++下移L1页目录表项pgd,映射下一个2MB空间的虚拟地址到对应的2MB的物理空间。
在这里解析下,为什么L1页目录表项pgd能够映射2MB的虚地地址空间。
在本文的第一个图中,他是arm典型的mmu映射框架图,但并不是linux的,linux映射框架图在它的基础做了些调整和优化。
linux所做的调整描述如下(以下摘自linux内核:arch/arm/include/asm/pgtable-2level.h中提供的注释说明):
/*
* Hardware-wise, we have a two level page table structure, where the first
* level has 4096 entries, and the second level has 256 entries. Each entry
* is one 32-bit word. Most of the bits in the second level entry are used
* by hardware, and there aren't any "accessed" and "dirty" bits.
*
* Linux on the other hand has a three level page table structure, which can
* be wrapped to fit a two level page table structure easily - using the PGD
* and PTE only. However, Linux also expects one "PTE" table per page, and
* at least a "dirty" bit.
*
* Therefore, we tweak the implementation slightly - we tell Linux that we
* have 2048 entries in the first level, each of which is 8 bytes (iow, two
* hardware pointers to the second level.) The second level contains two
* hardware PTE tables arranged contiguously, preceded by Linux versions
* which contain the state information Linux needs. We, therefore, end up
* with 512 entries in the "PTE" level.
*
* This leads to the page tables having the following layout:
*
重要调整说明如下:
L1页表从4096个item变为2048个item,但每个item的大小从原来的4字节变为8个字节。
一个page中,放置2个L2页表,每个还是256项,每项是4个字节,所以总计是256*2*4=2KB,放置在page页的下半部,而上部分放置对应的linux内存管理系统使用的页表,mmu硬件是不会去使用它的。所以刚好
占满一个page页的大小(4KB),这样就不浪费空间了。
有了上面基础,下面再详细的分析以上的line780的函数alloc_init_pud,该函数会最终调用到alloc_init_pte函数:
line598 early_pte_alloc函数判断对应的pmd所指向的L2页表是否存在,如果不存在就分配L2页表,如果存在就返回L2页表所在page页的虚地址。
line572
判断pmd所指向的L2页表是否存在,不存在则通过early_alloc
函数分配PTE_HWTABLE_OFF(512*4=2KB)+PTE_HWTABLE_SIZE(512*4=2KB)总计4KB的一个物理页来存储2个linuxpet
页表+2个hwpte页表。
line574返回这个物理页所在虚拟地址
回到alloc_init_pte函数的line599:
line183 pte_index用来确定该虚拟地址在L2页表中的偏移量。即虚拟地址的bit[12~21]共计9个bit,刚好用于寻址两个L2页表(总计512项)
回到alloc_init_pte函数,其中line605行,是设置L2页表中addr所定位到的页表项(即pte),主要工作就是填充对应物理页的物理地址,以供mmu硬件来实现地址的翻译。
line604~line607循环填充完两个hwpte页表,完成一个2M物理内存的映射表的建立。
line608 将最终调用如下函数:static inline void __pmd_populate(pmd_t *pmdp, phys_addr_t pte, pmdval_t prot)
在执行这个函数之前,2个L2页表已经建立,该函数的作用就是设置L1页表的对应表项,使其指向刚建立的2个L2页表(hwpte0,hwpte1),正如前面所说,由于linux的L1页表项是8个字节大小,所以:
line133 将头4个字节指向hwpte0页表,
line135 将后4个字节指向hwpte1页表,至此L1---〉L2页表的关联已经建立。
line137 是刷新TLB缓冲,使系统的cpu都可以看见该映射的变化
至此已完成struct map_desc *md结构体所指定的虚拟地址到物理地址的映射关系的建立,以供硬件mmu来自动实现虚拟到物理地址的翻译。
以上过程,有选择的将某些细节给省略了,限于篇幅,另外如果明白了这个过程,很细节的可以自己去看相关的代码。譬如上面的set_pte_ext函数,会调用的汇编函数来实现pte表项的设置。
linux arm mmu基础【转】的更多相关文章
- 应聘linux/ARM嵌入式开发岗位
**************************************************************** 因为发在中华英才和智联招聘没有人采我所以我 在这里发布我的个人简历希望 ...
- linux arm的高端内存映射
linux arm的高端内存映射(1) vmalloc 高端内存映射 与高端映射对立的是低端映射或所谓直接映射,内核中有关变量定义它们的它们的分界点,全局变量high_memory,该变量定义在m ...
- linux arm的存储分布那些事之一【转】
转自:http://blog.csdn.net/xiaojsj111/article/details/11724081 linux arm的存储分布那些事之一 linux arm 内存分布总览 上图是 ...
- linux arm的存储分布那些事之一
转自:http://blog.csdn.net/xiaojsj111/article/details/11724081 linux arm 内存分布总览 上图是linux的arm的虚拟地址分布 ...
- ARM MMU
关于MMU,以下几篇文章写得通俗易懂: s3c6410_MMU地址映射过程详述 追求卓越之--arm MMU详解 基于S3C6410的ARM11学习(十五) MMU来了 这里总结MMU三大作用: 1. ...
- Linux 脚本编写基础
txt去重 http://man.linuxde.net/sort Linux 脚本编写基础 http://www.cnblogs.com/linn/archive/2007/03/05/664 ...
- linux发行版基础目录
linux发行版基础目录 linux 基础目录 linux基础目录 目录 作用 / 根目录,起源 /boot linux引导启动目录 /lib 库目录 /bin 常用内部命令 /sbin 常用内部管理 ...
- LINUX二十个基础命令
LINUX二十个基础命令 一. useradd命令 1.命令格式: useradd 选项 用户名 2.命令功能: 添加新的用户账号 3.常用参数: -c comment 指定一段注释性描述.-d 目录 ...
- Linux命令工具基础04 磁盘管理
Linux命令工具基础04 磁盘管理 日程磁盘管理中,我们最常用的有查看当前磁盘使用情况,查看当前目录所占大小,以及打包压缩与解压缩: 查看磁盘空间 查看磁盘空间利用大小 df -h -h: huma ...
随机推荐
- 【大数据】关于Kafka的进一步理解
前置: 文件host 192.168.11.13 192.168.11.14 192.168.11.30 脚本init_kafka.sh #!/bin/bash source /etc/profile ...
- ubuntu在终端使用的常用命令
1.ubuntu系统显示IP地址:ifconfig 2.ubuntu系统文件命令: cat:显示文本文件内容,全部文本.格式:cat filename more:显示文件内容,分页显示,回车逐行下翻. ...
- Hashtable 和 HashMap 以及 ConcurrentHashMap
备忘: ConcurrentHashMap与Hashtable的区别: Hashtable中采用的锁机制是一次锁住整个hash表,从而同一时刻只能由一个线程对其进行操作:而ConcurrentHash ...
- MT【140】是否存在常数$\textbf{C}$
\(\textbf{天下事有难易乎?为之,则难者亦易矣 不为,则易者亦难矣------<为学>}\) (中国第59届国际数学奥林匹克国家集训队2018.3.20日测试题) 证明:存在常数\ ...
- 【BZOJ1914】数三角形(组合数,极角排序)
[BZOJ1914]数三角形(组合数,极角排序) 题面 BZOJ权限题 良心洛谷 题解 这种姿势很吼啊,表示计算几何啥的一窍不通来着. 题目就是这样,正难则反,所以我们不考虑过原点的三角形, 反过来, ...
- 【UOJ228】基础数据结构练习题(线段树)
[UOJ228]基础数据结构练习题(线段树) 题面 UOJ 题解 我们来看看怎么开根? 如果区间所有值都相等怎么办? 显然可以直接开根 如果\(max-sqrt(max)=min-sqrt(min)\ ...
- XML外部实体(XXE)注入详解
###XML与xxe注入基础知识 1.XMl定义 XML由3个部分构成,它们分别是:文档类型定义(Document Type Definition,DTD),即XML的布局语言:可扩展的样式语言(Ex ...
- PHP发送HTTP请求的几种方式
转发:https://blog.tanteng.me/2017/07/php-curl-guzzlehttp/ 1)PHP开发中我们常用CURL 方式封装 HTTP请求,什么是CURL? CURL 是 ...
- Go_17:GoLang中如何使用多参数属性传参
我们常常因为传入的参数不确定而头疼不已,golang 为我们提供了接入多值参数用于解决这个问题.但是一般我们直接写已知代码即所有的值都知道一个一个塞进去就好了,但是绝大部分我们是得到用户的大量输入想通 ...
- [应用篇]第一篇 EL表达式入门
概念 EL表达式:EL 全名为Expression Language,就是为了替代<%= %>脚本表达式. 作用 获取数据: EL表达式主要用于替换JSP页面中的脚本表达式,以从各种类型的 ...