题目

话说有没有跟我一样直接猜了一个最大值不会改变这样一个二乎乎的结论之后交上去保龄的呀

首先看到棋盘,选择相邻的格子,非常经典的黑白染色

显然那个二乎乎的结论是错的,随便就能\(hack\)了

于是我们二分这个最大值

如果当前二分出来的最大值是\(mid\),\(i+j\)为奇数,起点连\(mid-a[i][j]\)的边,否则向终点连\(mid-a[i][j]\)的边,相邻的格子连流量无穷的边,跑最大流看看起点连出去的边和连向终点的边是否都满流就好了

但是这样仅限于\(n\times m\)为偶数的情况

因为之后当\(n\times m\)为偶数的时候我们可以把整个棋盘整体加\(1\),因此存在单调性,于是可以二分

但是当\(n\times m\)为奇数的时候我们无论如何都得空至少一个

我们可以考虑一下最后棋盘变成了\(x\)

那么就会存在

\[x\times num_{\text{奇}}-sum_{\text{奇}}=x\times num_{\text{偶}}-sum_{\text{偶}}
\]

这个其实还是来源于上面的网络流建图,就是让两边流量平衡,由于\(num_{\text{奇}}!=num_{\text{偶}}\),我们可以直接解得

\[x=\frac{sum_{\text{奇}}-sum_{\text{偶}}}{num_{\text{奇}}-num_{\text{偶}}}
\]

由于我们不能再让棋盘整体加了,于是直接判断\(x\)是否合法就好了

代码

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
#define re register
#define LL long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
const int maxn=2005;
const LL inf=5e12;
inline int read() {
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
std::queue<int> q;
const int dx[]={0,0,1,-1};
const int dy[]={1,-1,0,0};
int head[maxn],d[maxn],id[51][51],S,T,num;
int n,m,a[51][51],pd[maxn],cur[maxn];
struct E{int v,nxt;LL f;}e[maxn*40];
inline void C(int x,int y,LL f) {
e[++num].v=y;e[num].nxt=head[x];
head[x]=num;e[num].f=f;
}
inline void add(int x,int y,LL f) {C(x,y,f),C(y,x,0);}
inline int BFS() {
for(re int i=S;i<=T;i++) d[i]=0,cur[i]=head[i];
d[S]=1,q.push(S);
while(!q.empty()) {
int k=q.front();q.pop();
for(re int i=head[k];i;i=e[i].nxt)
if(e[i].f&&!d[e[i].v]) d[e[i].v]=d[k]+1,q.push(e[i].v);
}
return d[T];
}
LL dfs(int x,LL now) {
if(x==T||!now) return now;
LL flow=0,ff;
for(re int& i=cur[x];i;i=e[i].nxt)
if(d[e[i].v]==d[x]+1) {
ff=dfs(e[i].v,min(now,e[i].f));
if(ff<=0) continue;
now-=ff,flow+=ff,e[i].f-=ff,e[i^1].f+=ff;
if(!now) break;
}
return flow;
}
inline int check(LL mx) {
num=1;memset(head,0,sizeof(head));
for(re int i=1;i<=n;i++)
for(re int j=1;j<=m;j++) {
pd[id[i][j]]=num+1;
if((i+j)&1) add(S,id[i][j],mx-a[i][j]);
else add(id[i][j],T,mx-a[i][j]);
if(mx<a[i][j]) return 0;
}
for(re int i=1;i<=n;i++)
for(re int j=1;j<=m;j++) {
if(!((i+j)&1)) continue;
for(re int k=0;k<4;k++) {
int x=i+dx[k],y=j+dy[k];
if(x<1||y<1||x>n||y>m) continue;
add(id[i][j],id[x][y],inf);
}
}
while(BFS()) dfs(S,inf);
int flag=1;
for(re int i=1;i<=n;i++)
for(re int j=1;j<=m;j++)
flag&=(e[pd[id[i][j]]].f==0);
return flag;
}
int main() {
int Test=read();
while(Test--) {
n=read(),m=read();T=0;
for(re int i=1;i<=n;i++)
for(re int j=1;j<=m;j++) a[i][j]=read();
for(re int i=1;i<=n;i++)
for(re int j=1;j<=m;j++) id[i][j]=++T;
++T;
LL s[2],tot[2];
tot[0]=tot[1]=s[0]=s[1]=0;
for(re int i=1;i<=n;i++)
for(re int j=1;j<=m;j++)
tot[(i+j)&1]++,s[(i+j)&1]+=a[i][j];
if((n*m)&1) {
LL x=(s[1]-s[0])/(tot[1]-tot[0]);
if(check(x))
printf("%lld\n",x*tot[1]-s[1]);
else puts("-1");
}
else {
LL ans=-1,l=1,r=2e9;
for(re int i=1;i<=n;i++)
for(re int j=1;j<=m;j++) l=max(l,a[i][j]);
while(l<=r) {
LL mid=l+r>>1;
if(check(mid)) r=mid-1,ans=mid;
else l=mid+1;
}
if(ans==-1) puts("-1");
else printf("%lld\n",ans*tot[1]-s[1]);
}
}
return 0;
}

[SCOI2012]奇怪的游戏的更多相关文章

  1. BZOJ 2756: [SCOI2012]奇怪的游戏 [最大流 二分]

    2756: [SCOI2012]奇怪的游戏 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 3352  Solved: 919[Submit][Stat ...

  2. Bzoj2756 [SCOI2012]奇怪的游戏

    2756: [SCOI2012]奇怪的游戏 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 3220  Solved: 886 Description ...

  3. [题目] Luogu P5038 [SCOI2012]奇怪的游戏

    学习资料 -----1----- -----2----- P5038 [SCOI2012]奇怪的游戏 一道甚神但没用到高深模型的题 思路 没思路,看题解吧 代码 #include <iostre ...

  4. BZOJ 2756: [SCOI2012]奇怪的游戏 网络流/二分

    2756: [SCOI2012]奇怪的游戏 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 1594  Solved: 396[Submit][Stat ...

  5. bzoj 2756 [SCOI2012]奇怪的游戏 二分+网络流

    2756:[SCOI2012]奇怪的游戏 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 4926  Solved: 1362[Submit][Stat ...

  6. bzoj2756: [SCOI2012]奇怪的游戏(网络流+分情况)

    2756: [SCOI2012]奇怪的游戏 题目:传送门 题解: 发现做不出来的大难题一点一个网络流 %大佬 首先黑白染色(原来是套路...)染色之后就可以保证每次操作都一定会使黑白各一个各自的值加1 ...

  7. bzoj 2756: [SCOI2012]奇怪的游戏

    Description Blinker最近喜欢上一个奇怪的游戏. 这个游戏在一个 N*M 的棋盘上玩,每个格子有一个数.每次 Blinker 会选择两个相邻 的格子,并使这两个数都加上 1. 现在 B ...

  8. P5038 [SCOI2012]奇怪的游戏 二分+网络流

    $ \color{#0066ff}{ 题目描述 }$ Blinker最近喜欢上一个奇怪的游戏. 这个游戏在一个 \(N \times M\) 的棋盘上玩,每个格子有一个数.每次\(Blinker\)会 ...

  9. BZOJ2756:[SCOI2012]奇怪的游戏(最大流,二分)

    Description Blinker最近喜欢上一个奇怪的游戏. 这个游戏在一个 N*M 的棋盘上玩,每个格子有一个数.每次 Blinker 会选择两个相邻 的格子,并使这两个数都加上 1. 现在 B ...

  10. BZOJ 2756 SCOI2012 奇怪的游戏 最大流

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2756 Description Blinker最近喜欢上一个奇怪的游戏. 这个游戏在一个 N ...

随机推荐

  1. springJDBC 中JdbcTemplate 类方法使用

    一,Dao IUserinfDao package com.dkt.dao; import java.util.List; import com.dkt.entity.Userinfo; public ...

  2. UVAlive6807 Túnel de Rata (最小生成树)

    题意 题目链接 Sol 神仙题Orz 我们考虑选的边的补集,可以很惊奇的发现,这个补集中的边恰好是原图中的一颗生成树: 并且答案就是所有边权的和减去这个边集中的边的权值: 于是我们只需要求最大生成树就 ...

  3. BZOJ4144: [AMPPZ2014]Petrol(最短路 最小生成树)

    题意 题目链接 Sol 做的时候忘记写题解了 可以参考这位大爷 #include<bits/stdc++.h> #define Pair pair<int, int> #def ...

  4. vmware参数详解

    config.ini - 设置 VMX文件参数 文件configs.ini或config(在Linux中)为所有用户设置参数,或者如果您喜欢 - 为主机设置参数. 如果要为所创建的所有虚拟机使用某些设 ...

  5. Pwn With longjmp

    前言 这个是 seccon-ctf-quals-2016 的一个题,利用方式还是挺特殊的记录一下. 题目链接 http://t.cn/RnfeHLv 正文 首先看看程序的安全措施 haclh@ubun ...

  6. 润乾V4报表放入WEBINF保护目录下如何实现

     润乾报表放入WEBINF保护目录下如何实现 WEB-INF下面的文件都是受保护的,客户为了保护项目的文件不受到非法的访问,jsp页面都放在WEB-INF下,那润乾报表放入WEB-INF保护目录下 ...

  7. join() 方法详解及应用场景

    总结:join方法的功能就是使异步执行的线程变成同步执行.也就是说,当调用线程实例的start方法后,这个方法会立即返回,如果在调用start方法后后需要使用一个由这个线程计算得到的值,就必须使用jo ...

  8. redis 持久化策略、aof配置、测试、手动持久化、aof文件体积优化

    redis持久化策略 1.数据文件.rdb 2.更新日志.aof 设置aof 1.命令方式config set appendonly noconfig rewrite2.配置文件方式 redis持久化 ...

  9. Pig安装

    环境: hadoop-2.4.1.jdk1.6.0_45.pig-0.12.1   1.下载pig并解压 tar -xzvf pig-0.12.1.tar.gz 2.设置环境变量 export PIG ...

  10. 使用Spring操作Redis的key-value数据

    前言 最近工作一直忙的不可开交,小Alan已经很久没有和大家分享知识了,在深圳待了两年多,依然感觉自己还是个小菜鸟,工作中还是会遇到很多自己在短期内无法搞定的事情,每当这个时候总是会感觉到很沮丧,就会 ...