容易发现只要图中有非链部分则无解。剩下就非常简单了。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 500010
#define P 989381
int n,m,fa[N],degree[N],size[N];
struct data
{
int x,y;
bool operator <(const data&a) const
{
return x<a.x||x==a.x&&y<a.y;
}
bool operator ==(const data&a) const
{
return x==a.x&&y==a.y;
}
}a[N];
int find(int x){return fa[x]==x?x:fa[x]=find(fa[x]);}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3444.in","r",stdin);
freopen("bzoj3444.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
for (int i=;i<=m;i++)
{
a[i].x=read(),a[i].y=read();
if (a[i].x>a[i].y) swap(a[i].x,a[i].y);
}
sort(a+,a+m+);
int t=unique(a+,a+m+)-a-;
for (int i=;i<=n;i++) fa[i]=i;
for (int i=;i<=t;i++)
if (find(a[i].x)==find(a[i].y)) {cout<<;return ;}
else fa[find(a[i].x)]=find(a[i].y),degree[a[i].x]++,degree[a[i].y]++;
int cnt=;
for (int i=;i<=n;i++)
if (degree[i]>) {cout<<;return ;}
else if (find(i)==i) cnt++;
else size[find(i)]++;
t=;
for (int i=;i<=n;i++)
if (find(i)==i&&size[i]) t++;
int ans=;
for (int i=;i<=t;i++) ans=(ans<<)%P;
for (int i=;i<=cnt;i++) ans=1ll*ans*i%P;
cout<<ans;
return ;
}

BZOJ3444 最后的晚餐(并查集)的更多相关文章

  1. bzoj3444: 最后的晚餐(并查集+组合数学)

    3444: 最后的晚餐 题目:传送门 题解: 考虑有解的情况: 直接上并查集,同一个联通块里的人一定要坐在一起的.不难发现其实对于每个联通块最多就只有两种排列方式,那就直接把大于等于两个人的联通块先去 ...

  2. 【bzoj3444】最后的晚餐 并查集

    题目描述 n个人排成一排,有m个条件,第i个条件要求ai和bi相邻,求方案数. 输入 输入有m+1行,第一行有两个用空格隔开的正整数n.m,如题所示.接下来的m行,每一行有两个用空格隔开的正整数,第i ...

  3. BZOJ 4199: [Noi2015]品酒大会 [后缀数组 带权并查集]

    4199: [Noi2015]品酒大会 UOJ:http://uoj.ac/problem/131 一年一度的“幻影阁夏日品酒大会”隆重开幕了.大会包含品尝和趣味挑战两个环节,分别向优胜者颁发“首席品 ...

  4. [UOJ#131][BZOJ4199][NOI2015]品酒大会 后缀数组 + 并查集

    [UOJ#131][BZOJ4199][NOI2015]品酒大会 试题描述 一年一度的“幻影阁夏日品酒大会”隆重开幕了.大会包含品尝和趣味挑战两个环节,分别向优胜者颁发“首席品酒家”和“首席猎手”两个 ...

  5. 4199. [NOI2015]品酒大会【后缀数组+并查集】

    Description 一年一度的“幻影阁夏日品酒大会”隆重开幕了.大会包含品尝和趣味挑战两个环节,分别向优胜者颁发“首席品 酒家”和“首席猎手”两个奖项,吸引了众多品酒师参加.在大会的晚餐上,调酒师 ...

  6. 关押罪犯 and 食物链(并查集)

    题目描述 S 城现有两座监狱,一共关押着N 名罪犯,编号分别为1~N.他们之间的关系自然也极不和谐.很多罪犯之间甚至积怨已久,如果客观条件具备则随时可能爆发冲突.我们用"怨气值"( ...

  7. 图的生成树(森林)(克鲁斯卡尔Kruskal算法和普里姆Prim算法)、以及并查集的使用

    图的连通性问题:无向图的连通分量和生成树,所有顶点均由边连接在一起,但不存在回路的图. 设图 G=(V, E) 是个连通图,当从图任一顶点出发遍历图G 时,将边集 E(G) 分成两个集合 T(G) 和 ...

  8. bzoj1854--并查集

    这题有一种神奇的并查集做法. 将每种属性作为一个点,每种装备作为一条边,则可以得到如下结论: 1.如果一个有n个点的连通块有n-1条边,则我们可以满足这个连通块的n-1个点. 2.如果一个有n个点的连 ...

  9. [bzoj3673][可持久化并查集 by zky] (rope(可持久化数组)+并查集=可持久化并查集)

    Description n个集合 m个操作 操作: 1 a b 合并a,b所在集合 2 k 回到第k次操作之后的状态(查询算作操作) 3 a b 询问a,b是否属于同一集合,是则输出1否则输出0 0& ...

  10. [bzoj3123][sdoi2013森林] (树上主席树+lca+并查集启发式合并+暴力重构森林)

    Description Input 第一行包含一个正整数testcase,表示当前测试数据的测试点编号.保证1≤testcase≤20. 第二行包含三个整数N,M,T,分别表示节点数.初始边数.操作数 ...

随机推荐

  1. [转载]在Windows下为PHP5.6安装redis扩展和memcached扩展

    一.php安装redis扩展   1.使用phpinfo()函数查看PHP的版本信息,这会决定扩展文件版本       2.根据PHP版本号,编译器版本号和CPU架构, 选择php_redis-2.2 ...

  2. [PLC]ST语言一:LD_LDI_AND_ANI_OR_ORI

    一:LD_LDI_AND_ANI_OR_ORI基本指令 说明:简单的顺控指令不做其他说明. 控制要求:无 编程梯形图: 结构化编程ST语言: M400:=(M0 OR M1) AND M2; M401 ...

  3. Docker创建数据卷容器

    docker create --name test_4 -v /data_4 nginx创建一个test_4数据卷容器,在该容器的/data_4目录挂载数据卷 使用数据卷容器时,无须保证数据卷容器处于 ...

  4. java并发之线程池的使用

    背景 当系统并发的线程数量很多,并且每个线程都是执行一个时间很短的任务就结束了,这样频繁创建线程就会大大降低系统的效率,因为频繁创建线程和销毁线程需要消耗大量的系统资源. 所以需要一个办法使得线程可以 ...

  5. [操作系统]makefile

    makefile文件保存了编译器和连接器的参数选项,还表述了所有源文件之间的关系(源代码文件需要的特定的包含文件,可执行文件要求包含的目标文件模块及库等). 创建程序(make程序)首先读取makef ...

  6. java.io.tmpdir指定的路径在哪?

    Java.io.tmpdir介绍 System.getproperty(“java.io.tmpdir”)是获取操作系统缓存的临时目录,不同操作系统的缓存临时目录不一样, 在Windows的缓存目录为 ...

  7. 用shell实现bat批处理的pause命令-追加改进

    我参考了这个文章:用shell实现bat的pause http://linux-wiki.cn/wiki/zh-hans/%E7%94%A8shell%E5%AE%9E%E7%8E%B0bat%E7% ...

  8. 02_python内置模块_timeit

    timeit模块可以用来测试一小段python代码的执行速度. (1)timeit.Timer(stmt='pass', setup='pass', timer=<timer function& ...

  9. (转)Django 数据库

         转:https://blog.csdn.net/ayhan_huang/article/details/77575186      目录 数据库说明 配置数据库 在屏幕输出orm操作对应的s ...

  10. 记事本App之NABCD

    在经过了漫长的讨论之后,在经历了无数次提议.否定.再提议.改进之后.我们团队的团队项目终于有了结果,小组成员一致同意做一个移动端记事本的app.下面我就来详细的阐明我们项目的NABCD这5大项内容. ...