前半部分是简介, 后半部分是案例


KNN近邻算法: 
简单说就是采用测量不同特征值之间的距离方法进行分类(k-Nearest Neighbor,KNN)

优点: 精度高、对异常值不敏感、无数据输入假定 
缺点:时间复杂度高、空间复杂度高

  • 1、当样本不平衡时,比如一个类的样本容量很大,其他类的样本容量很小,输入一个样本的时候,K个临近值中大多数都是大样本容量的那个类,这时可能就会导致分类错误。改进方法是对K临近点进行加权,也就是距离近的点的权值大,距离远的点权值小。
  • 2、计算量较大,每个待分类的样本都要计算它到全部点的距离,根据距离排序才能求得K个临近点,改进方法是:先对已知样本点进行剪辑,事先去除对分类作用不大的样本。

适用数据范围:

  • 标称型(离散型):标称型目标变量的结果只在有限目标集中取值,如真与假(标称型目标变量主要用于分类)
  • 数值型:数值型目标变量则可以从无限的数值集合中取值,如0.100,42.001等 (数值型目标变量主要用于回归分析)

工作原理:

  • 训练样本集—>存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系。输人没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。一般来说,我们只选择样本数据集中前K个最相似的数据,这就是K-近邻算法中K的出处,通常K是不大于20的整数。 最后 ,选择K个最相似数据中出现次数最多的分类,作为新数据的分类。
  • 电影类别KNN分析(图片来源于网络)

  • 欧氏距离(Euclidean Distance,欧几里得度量)

  • 计算过程图

  • 案例 
    代码都是在 jupyter notebook 中写的
 import numpy as np
import pandas as pd
from pandas import Series,DataFrame
import matplotlib.pyplot as plt
%matplotlib inline
# 以上导入的包都是自己习惯性导入, 因为随时都可能会用到, 就每次先把这些都导入了 #这儿是我自己写了一个excel表格,方便快速的读取数据, 演示使用, 就不用series或者dataframe写了
film = pd.read_excel('films.xlsx',sheet_name=1)
#输入film后出现表格
fil

 # 电影的样本特征
train=film[['动作镜头','接吻镜头']]
# 样本标签,即要预测的标签,这儿要预测新数据是属于什么类别的电影
target=film['电影类别']
# 创建机器学习模型,需要导入
from sklearn.neighbors import KNeighborsClassifier
# 创建对象, 这儿的数据因为是离散型, 所以使用KNeighborsClassifier,
knn=KNeighborsClassifier()
# 对knn模型进行训练, 传入样本特征 和 样本标签
# 构建函数原型、构建损失函数、求损失函数最优解
knn.fit(train,target)
knn

当输入knn后出现如下代码, 表示训练完成

 KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
metric_params=None, n_jobs=1, n_neighbors=5, p=2,
weights='uniform')
 # 这儿随意写3个样本数据,需要按照样本数据的维度来写
cat=np.array([[5,19],[21,6],[23,24]])
# cat=np.array([[21,4]]) 也可以写1个
# 使用predict函数对数据进行预测
knn.predict(cat)

运行会出现下图:

预测完成 ! 成功判断出3个新样本的归属类别 
接下来也可以绘制图, 直观的查看近邻情况

 # scatter画出来的是散点图, 取数据使用 .values,二维数组中, 一维全部取出, 二维取0,表示出来就是[:,0]
plt.scatter(train.values[:,0],train.values[:,1])
# scatter可以有一些属性, 下边的color可以自定义显示的颜色
plt.scatter(cat[:,0],cat[:,1],color='red')

效果图为:

在使用KNN近邻算法时, 注意要分清楚样本集, 样本特征,样本标签


技术交流可以留言评论哦 ! 虚心学习, 不忘初心, 共同奋进 !

机器学习之利用KNN近邻算法预测数据的更多相关文章

  1. KNN近邻算法

    K近邻(KNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一.所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表.kNN算法的核 ...

  2. 机器学习入门KNN近邻算法(一)

    1 机器学习处理流程: 2 机器学习分类: 有监督学习 主要用于决策支持,它利用有标识的历史数据进行训练,以实现对新数据的表示的预测 1 分类 分类计数预测的数据对象是离散的.如短信是否为垃圾短信,用 ...

  3. 机器学习03:K近邻算法

    本文来自同步博客. P.S. 不知道怎么显示数学公式以及排版文章.所以如果觉得文章下面格式乱的话请自行跳转到上述链接.后续我将不再对数学公式进行截图,毕竟行内公式截图的话排版会很乱.看原博客地址会有更 ...

  4. 02机器学习实战之K近邻算法

    第2章 k-近邻算法 KNN 概述 k-近邻(kNN, k-NearestNeighbor)算法是一种基本分类与回归方法,我们这里只讨论分类问题中的 k-近邻算法. 一句话总结:近朱者赤近墨者黑! k ...

  5. 机器学习 Python实践-K近邻算法

    机器学习K近邻算法的实现主要是参考<机器学习实战>这本书. 一.K近邻(KNN)算法 K最近邻(k-Nearest Neighbour,KNN)分类算法,理解的思路是:如果一个样本在特征空 ...

  6. 机器学习随笔01 - k近邻算法

    算法名称: k近邻算法 (kNN: k-Nearest Neighbor) 问题提出: 根据已有对象的归类数据,给新对象(事物)归类. 核心思想: 将对象分解为特征,因为对象的特征决定了事对象的分类. ...

  7. 《机器学习实战》-k近邻算法

    目录 K-近邻算法 k-近邻算法概述 解析和导入数据 使用 Python 导入数据 实施 kNN 分类算法 测试分类器 使用 k-近邻算法改进约会网站的配对效果 收集数据 准备数据:使用 Python ...

  8. 机器学习:1.K近邻算法

    1.简单案例:预测男女,根据身高,体重,鞋码 import numpy as np import matplotlib import sklearn from skleran.neighbors im ...

  9. 机器学习实战笔记--k近邻算法

    #encoding:utf-8 from numpy import * import operator import matplotlib import matplotlib.pyplot as pl ...

随机推荐

  1. THE CUP OF LIFE即生命之杯。

    生命之杯 编辑 THE CUP OF LIFE即生命之杯. <生命之杯>(西班牙语:La copa de la vida,英语:The Cup of Life)是一首由波多黎各裔歌手瑞奇· ...

  2. 硬盘上的一些算法小题目||and今天看了下林锐的书以及gdb调试 及一些变成算法小题目

    gdb调试:观察点,断点,事件捕捉点.step 进入函数,next 跳过函数,until 跳出循环,finish 结束函数 林锐:书后试题 & c++的对象模型图 看了二叉树的非递归遍历, 链 ...

  3. Git操作(基础篇)

    Git操作(基础篇) Git是一款免费.开源的分布式版本控制系统,用于敏捷高效地处理任何或小或大的项目.Git的读音为/gɪt/.Git是一个开源的分布式版本控制系统,用以有效.高速的处理从很小到非常 ...

  4. 解决win7远程桌面连接时发生身份验证错误的方法

    远程桌面连接,是我们比较常用的一个功能了,但有时突然不能用了,以下是我遇到该问题,并解决该问题的方法.连接时报的是“发生身份验证错误,要求的函数不受支持”,解决之后细想一下,该问题好像是在我在电脑上安 ...

  5. Redis基本数据类型命令汇总

    前言   前阶段写Redis客户端作为学习和了解Redis Protocol,基本上把Strintg,List,Hash,Set,SortedSet五种基础类型的命令都写完了,本篇进行总结,也相当于复 ...

  6. windows禁用端口命令

    netstat -aon|findstr 1099 找出占用1099端口的进程 然后关闭占用该端口的进程:taskkill -f -pid 3756(进程id)

  7. VC++中的__super::

    在学习别人的代码时,发现了一个__super,第一感觉很像java中的super,或者C#中的base网上查了一下发现作用差不多,都是指父类.C++本身没有__super,这是visual c++的扩 ...

  8. package.xml

    package.xml 也是一个catkin的package必备文件, 它是这个软件包的描述文件, 在较早的ROS版本(rosbuild编译系统)中, 这个文件叫做 manifest.xml , 用于 ...

  9. PAT乙级1023

    1023 组个最小数 (20 分)   给定数字 0-9 各若干个.你可以以任意顺序排列这些数字,但必须全部使用.目标是使得最后得到的数尽可能小(注意 0 不能做首位).例如:给定两个 0,两个 1, ...

  10. PAT乙级1006

    1006 换个格式输出整数 (15 分)   让我们用字母 B 来表示“百”.字母 S 表示“十”,用 12...n 来表示不为零的个位数字 n(<10),换个格式来输出任一个不超过 3 位的正 ...