继续前一篇的内容。前一篇内容为:
Spark中Worker源码分析(一)http://www.cnblogs.com/yourarebest/p/5300202.html

4.receive方法,
receive方法主要分为以下14种情况:

(1)worker向master注册成功后,详见代码
(2)worker向master发送心跳消息,如果还没有注册到master上,该消息将被忽略,详见代码
(3)worker的工作空间的清理,详见代码
(4)更换master,详见代码
(5)worker注册失败,详见代码
(6)再次连接worker,详见代码
(7)创建executor,详见代码
(8)executor的转态发生改变时,详见代码
(9)kill executor,详见代码
(10)创建driver,详见代码
(11)kill driver,详见代码
(12)driver的状态发生变化时,详见代码
(13)将worker注册到master上,详见代码
(14)app执行完毕,详见代码
worker与master相关的交互为(1)(2)(4)(6)(13)
worker与driver相关的交互为(10)(11)(12)
worker与executor相关的交互为(3)(7)(8)(9)(14),需要说明的是(3)(14)它们的完成都与executor有着密切的联系。


<code>
override def receive: PartialFunction[Any, Unit] = {
    //(1)注册成功的Woker
    case RegisteredWorker(masterRef, masterWebUiUrl) =>
      logInfo("Successfully registered with master " + masterRef.address.toSparkURL)
      registered = true
      changeMaster(masterRef, masterWebUiUrl)
      //守护线程15s发送一次心跳消息
      forwordMessageScheduler.scheduleAtFixedRate(new Runnable {
        override def run(): Unit = Utils.tryLogNonFatalError {
          self.send(SendHeartbeat)
        }
      }, 0, HEARTBEAT_MILLIS, TimeUnit.MILLISECONDS)
      //如果允许清理
      if (CLEANUP_ENABLED) {
        logInfo(s"Worker cleanup enabled; old application directories will be deleted in: $workDir")
        forwordMessageScheduler.scheduleAtFixedRate(new Runnable {
          override def run(): Unit = Utils.tryLogNonFatalError {
            //守护线程30min清理app文件夹
            self.send(WorkDirCleanup)
          }
        }, CLEANUP_INTERVAL_MILLIS, CLEANUP_INTERVAL_MILLIS, TimeUnit.MILLISECONDS)
      }
    //(2)worker向master发送心跳消息,如果还没有注册到master上,该消息将被忽略
    case SendHeartbeat =>
      if (connected) { sendToMaster(Heartbeat(workerId, self)) }
    //(3)worker的工作空间的清理
    case WorkDirCleanup =>
         //为了加快独立将来独立线程的清理工作,不要占用worker rpcEndpoint的端口号,拷贝ids所以它可以被清理线程使用
      val appIds = executors.values.map(_.appId).toSet
      val cleanupFuture = concurrent.future {
        val appDirs = workDir.listFiles()
        if (appDirs == null) {
          throw new IOException("ERROR: Failed to list files in " + appDirs)
        }
        appDirs.filter { dir =>
          //目录正在被app使用-当清理时检查app是否在运行
          val appIdFromDir = dir.getName
          val isAppStillRunning = appIds.contains(appIdFromDir)
          dir.isDirectory && !isAppStillRunning &&
          !Utils.doesDirectoryContainAnyNewFiles(dir, APP_DATA_RETENTION_SECONDS)
        }.foreach { dir =>
          logInfo(s"Removing directory: ${dir.getPath}")
          Utils.deleteRecursively(dir)
        }
      }(cleanupThreadExecutor)
      cleanupFuture.onFailure {
        case e: Throwable =>
          logError("App dir cleanup failed: " + e.getMessage, e)
      }(cleanupThreadExecutor)
    //(4)更换master
    case MasterChanged(masterRef, masterWebUiUrl) =>
      logInfo("Master has changed, new master is at " + masterRef.address.toSparkURL)
      changeMaster(masterRef, masterWebUiUrl)
      val execs = executors.values.
        map(e => new ExecutorDescription(e.appId, e.execId, e.cores, e.state))
      masterRef.send(WorkerSchedulerStateResponse(workerId, execs.toList, drivers.keys.toSeq))
    //(5)worker注册失败
    case RegisterWorkerFailed(message) =>
      if (!registered) {
        logError("Worker registration failed: " + message)
        System.exit(1)
      }
    //(6)再次连接Worker
    case ReconnectWorker(masterUrl) =>
      logInfo(s"Master with url $masterUrl requested this worker to reconnect.")
      //再次将worker注册到masters上
      registerWithMaster()
    //(7)创建Executor
    case LaunchExecutor(masterUrl, appId, execId, appDesc, cores_, memory_) =>if (masterUrl != activeMasterUrl) {
        logWarning("Invalid Master (" + masterUrl + ") attempted to launch executor.")
      } else {
        try {
          logInfo("Asked to launch executor %s/%d for %s".format(appId, execId, appDesc.name))
          //创建executor的工作目录
          val executorDir = new File(workDir, appId + "/" + execId)
          if (!executorDir.mkdirs()) {
            throw new IOException("Failed to create directory " + executorDir)
          }
          //为executors创建本地目录,通过SPARK_EXECUTOR_DIRS环境变量设置,当app执行完后并删除
          val appLocalDirs = appDirectories.get(appId).getOrElse {
            Utils.getOrCreateLocalRootDirs(conf).map { dir =>
              val appDir = Utils.createDirectory(dir, namePrefix = "executor")
              Utils.chmod700(appDir)
              appDir.getAbsolutePath()
            }.toSeq
          }
          appDirectories(appId) = appLocalDirs
          val manager = new ExecutorRunner(
            appId,
            execId,
            appDesc.copy(command = Worker.maybeUpdateSSLSettings(appDesc.command, conf)),
            cores_,
            memory_,
            self,
            workerId,
            host,
            webUi.boundPort,
            publicAddress,
            sparkHome,
            executorDir,
            workerUri,
            conf,
            appLocalDirs, ExecutorState.LOADING)
          executors(appId + "/" + execId) = manager
          manager.start()
          coresUsed += cores_
          memoryUsed += memory_
          sendToMaster(ExecutorStateChanged(appId, execId, manager.state, None, None))
        } catch {
          case e: Exception => {
            logError(s"Failed to launch executor $appId/$execId for ${appDesc.name}.", e)
            if (executors.contains(appId + "/" + execId)) {
              executors(appId + "/" + execId).kill()
              executors -= appId + "/" + execId
            }
            sendToMaster(ExecutorStateChanged(appId, execId, ExecutorState.FAILED,
              Some(e.toString), None))
          }
        }
      }
    //(8)executor的转态发生改变时
    case executorStateChanged @ ExecutorStateChanged(appId, execId, state, message, exitStatus) =>
      handleExecutorStateChanged(executorStateChanged)
    //(9)kill executor
    case KillExecutor(masterUrl, appId, execId) =>
      if (masterUrl != activeMasterUrl) {
        logWarning("Invalid Master (" + masterUrl + ") attempted to launch executor " + execId)
      } else {
        val fullId = appId + "/" + execId
        executors.get(fullId) match {
          case Some(executor) =>
            logInfo("Asked to kill executor " + fullId)
            executor.kill()
          case None =>
            logInfo("Asked to kill unknown executor " + fullId)
        }
      }
    //(10)创建Driver
    case LaunchDriver(driverId, driverDesc) => {
      logInfo(s"Asked to launch driver $driverId")
      val driver = new DriverRunner(
        conf,
        driverId,
        workDir,
        sparkHome,
        driverDesc.copy(command = Worker.maybeUpdateSSLSettings(driverDesc.command, conf)),
        self,
        workerUri,
        securityMgr)
      drivers(driverId) = driver
      driver.start(
      coresUsed += driverDesc.cores
      memoryUsed += driverDesc.mem
    }
    //(11)kill Driver
    case KillDriver(driverId) => {
      logInfo(s"Asked to kill driver $driverId")
      drivers.get(driverId) match {
        case Some(runner) =>
          runner.kill()
        case None =>
          logError(s"Asked to kill unknown driver $driverId")
      }
    }
    //(12)driver的状态发生变化时
    case driverStateChanged @ DriverStateChanged(driverId, state, exception) => {
      handleDriverStateChanged(driverStateChanged)
    }
    //(13)将worker注册到master上
    case ReregisterWithMaster =>
      reregisterWithMaster()
    //(14)app执行完毕
    case ApplicationFinished(id) =>
      finishedApps += id
      //删除执行完的app在执行过程中创建的本地文件
      maybeCleanupApplication(id)
  }
</code>

【原】 Spark中Worker源码分析(二)的更多相关文章

  1. 【原】 Spark中Worker源码分析(一)

    Worker作为对于Spark集群的健壮运行起着举足轻重的作用,作为Master的奴隶,每15s向Master告诉自己还活着,一旦主人(Master>有了任务(Application),立马交给 ...

  2. 【原】Spark中Client源码分析(二)

    继续前一篇的内容.前一篇内容为: Spark中Client源码分析(一)http://www.cnblogs.com/yourarebest/p/5313006.html DriverClient中的 ...

  3. 【原】Spark中Master源码分析(二)

    继续上一篇的内容.上一篇的内容为: Spark中Master源码分析(一) http://www.cnblogs.com/yourarebest/p/5312965.html 4.receive方法, ...

  4. 【原】Spark中Master源码分析(一)

    Master作为集群的Manager,对于集群的健壮运行发挥着十分重要的作用.下面,我们一起了解一下Master是听从Client(Leader)的号召,如何管理好Worker的吧. 1.家当(静态属 ...

  5. Spark中决策树源码分析

    1.Example 使用Spark MLlib中决策树分类器API,训练出一个决策树模型,使用Python开发. """ Decision Tree Classifica ...

  6. 【原】Spark中Client源码分析(一)

    在Spark Standalone中我们所谓的Client,它的任务其实是由AppClient和DriverClient共同完成的.AppClient是一个允许app(Client)和Spark集群通 ...

  7. Spark RPC框架源码分析(二)RPC运行时序

    前情提要: Spark RPC框架源码分析(一)简述 一. Spark RPC概述 上一篇我们已经说明了Spark RPC框架的一个简单例子,Spark RPC相关的两个编程模型,Actor模型和Re ...

  8. Spark Scheduler模块源码分析之DAGScheduler

    本文主要结合Spark-1.6.0的源码,对Spark中任务调度模块的执行过程进行分析.Spark Application在遇到Action操作时才会真正的提交任务并进行计算.这时Spark会根据Ac ...

  9. Spark RPC框架源码分析(三)Spark心跳机制分析

    一.Spark心跳概述 前面两节中介绍了Spark RPC的基本知识,以及深入剖析了Spark RPC中一些源码的实现流程. 具体可以看这里: Spark RPC框架源码分析(二)运行时序 Spark ...

随机推荐

  1. 远程连接Ucenter数据库

    网站和Ucenter不是同一服务器的连接方法~我折腾了好几天,终于找到了这方法!各位连接不上的不妨试试~什么事只有试过才知道行不行! define('UC_CONNECT', 'mysql'); de ...

  2. mysql 数据库备份,恢复。。。。

    mysql 数据备份,恢复,恢复没写,这里只写了备份... 先暂作记录吧! 备份:表结构和数据完全分开,默认有一个文件会记录所有表的结构,然后表中数据的备份 如果超过分卷的大小则会分成多个文件,不然则 ...

  3. #Leet Code# Permutation

    描述: 输出全排列 代码: class Solution: # @param num, a list of integer # @return a list of lists of integers ...

  4. LINQ实战

    转载:http://www.cnblogs.com/yubinfeng/p/4567064.html    原作者:尼古拉斯~yu 文章部分内容在原文的基础上有删改. 我相信在net进阶的这个阶段,很 ...

  5. HBase Shell(转)

    HBase 为用户提供了一个非常方便的使用方式, 我们称之为“HBase Shell”.HBase Shell 提供了大多数的 HBase 命令, 通过 HBase Shell 用户可以方便地创建.删 ...

  6. sharepoint online

    http://office.microsoft.com/en-001/sharepoint/sharepoint-online-online-collaboration-software-FX1037 ...

  7. 常用数据字典---bai

    --常用数据字典 -- system: normal; sysdba --查询所有的逻辑对象.所有. select count(1) from dba_objects; select * from d ...

  8. python常用绘图软件包记录

    在没有使用python之前,觉得matlab的绘图功能还算可以~但现在发现python的绘图包真的好强大,绘制出的图像非常专业漂亮,但具体使用还有待学习,这里记录学习过程中遇到的python绘图包,以 ...

  9. 对C语言中sizeof细节的三点分析

    转自对C语言中sizeof细节的三点分析 1.sizeof是运算符,跟加减乘除的性质其实是一样的,在编译的时候进行执行,而不是在运行时才执行. 那么如果编程中验证这一点呢?ps:这是前两天朋友淘宝面试 ...

  10. ZOJ 3713 In 7-bit

    点我看题目 题意 : 这个题的英文叙述真的是太强了,真不知道哪里来的英文,完全看不懂,看了两个小时没弄懂真正的题意.就是给你一个字符串,先输出长度,但是长度要用二进制表示出来,二进制的低7位左边如果没 ...