【BZOJ 2820】 YY的GCD (莫比乌斯+分块)
Description
神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种傻×必然不会了,于是向你来请教……多组输入Input
第一行一个整数T 表述数据组数接下来T行,每行两个正整数,表示N, MOutput
T行,每行一个整数表示第i组数据的结果Sample Input
2
10 10
100 100Sample Output
30
2791Hint
T = 10000
N, M <= 10000000
【分析】
当Prime确定时,跟bzoj1101一样,得 :
...=∑u[d]*(n/(Pri*d))*(m/(pri*d)) 但是暴力枚举Pri应该很慢吧~~多组诶~~
然后通过前面几题我们知道u这里是可以快速求和的,而我们尽量让(n/(Pri*d))*(m/(pri*d) 这个部分是确定的,那么搞完u之后就可以直接√n分块了。
所以不妨设k=pri*d,把k变成我们要枚举的东西,原式= ∑u[k/Pri]*(n/k)*(m/k) 。
问题就变成求u[k/Pri],它的意义是什么呢?相当于 - >
这个东西~~
这个东西表示蒟蒻的脑子是想不出来怎么求的~~
直接放大神的解析:~~


好像很有道理哦!!!!!
除了熟悉的积性函数,其他的我都不会线性筛了~~真是太年轻!!!
然后可爱的分块就可以了。
代码如下:
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<cmath>
using namespace std;
#define Maxn 10000010
#define LL long long LL mu[Maxn],pri[Maxn],h[Maxn],g[Maxn],pl;
bool q[Maxn]; LL mymin(LL x,LL y) {return x<y?x:y;} void get_mu(LL mx)
{
pl=;
memset(q,,sizeof(q));
mu[]=;g[]=;
for(LL i=;i<=mx;i++)
{
if(q[i])
{
pri[++pl]=i;
mu[i]=-;g[i]=;
}
for(LL j=;j<=pl;j++)
{
if(i*pri[j]>mx) break;
q[i*pri[j]]=;
if(i%pri[j]==) mu[i*pri[j]]=,g[i*pri[j]]=mu[i];
else mu[i*pri[j]]=-mu[i],g[i*pri[j]]=mu[i]-g[i];
if(i%pri[j]==) break;
}
}
h[]=g[];
for(int i=;i<=mx;i++) h[i]=h[i-]+g[i];
} int main()
{
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
get_mu();
int T;
scanf("%d",&T);
while(T--)
{
LL n,m,t;
scanf("%lld%lld",&n,&m);
if(n>m) t=n,n=m,m=t; LL ans=; LL sq=(LL)ceil(sqrt((double)m));
for(LL i=;i<=mymin(sq,n);i++)
{
ans+=g[i]*(n/i)*(m/i);
} for(LL i=sq+;i<=n;)
{
LL x=n/i,y=m/i;
LL r1=n/x+,r2=m/y+;
LL r=mymin(r1,r2);
if(r>m+) r=m+;
ans+=(h[r-]-h[i-])*x*y;
i=r;
} printf("%lld\n",ans); }
return ;
}
[BZOJ2820]
2016-08-30 11:45:40
【BZOJ 2820】 YY的GCD (莫比乌斯+分块)的更多相关文章
- [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)
[BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...
- Bzoj 2820: YY的GCD(莫比乌斯反演+除法分块)
2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MB Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x& ...
- BZOJ 2820: YY的GCD [莫比乌斯反演]【学习笔记】
2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1624 Solved: 853[Submit][Status][Discu ...
- bzoj 2820 YY的GCD 莫比乌斯反演
题目大意: 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 这里就抄一下别人的推断过程了 后面这个g(x) 算的方法就是在线性 ...
- bzoj 2820 YY的GCD - 莫比乌斯反演 - 线性筛
Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...
- BZOJ 2820: YY的GCD 莫比乌斯反演_数学推导_线性筛
Code: #include <cstdio> #include <algorithm> #include <cstring> #include <vecto ...
- BZOJ 2820 YY的GCD ——莫比乌斯反演
我们可以枚举每一个质数,那么答案就是 $\sum_{p}\sum_{d<=n}\mu(d)*\lfloor n / pd \rfloor *\lfloor m / pd \rfloor$ 直接做 ...
- 【莫比乌斯反演】关于Mobius反演与gcd的一些关系与问题简化(bzoj 2301 Problem b&&bzoj 2820 YY的GCD&&BZOJ 3529 数表)
首先我们来看一道题 BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd( ...
- 【刷题】BZOJ 2820 YY的GCD
Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种傻×必然 ...
- SPOJ PGCD 4491. Primes in GCD Table && BZOJ 2820 YY的GCD (莫比乌斯反演)
4491. Primes in GCD Table Problem code: PGCD Johnny has created a table which encodes the results of ...
随机推荐
- html代码实现自动滚动,鼠标滑过时停止滚动
<marquee style="width: 1200px;height:200px;margin:0px auto" onmouseout="this.start ...
- java 用eclipse j2ee写的servlet 程序,WEB-INF下的配置文件web.xml在哪啊?谢谢!
我用的版本是tomcat7.0,在webcontent\web-inf里只有一个空文件夹lib,写完servlet 类程序,就可以运行了,我想知道自动生成的配置文件在哪里?或者说从哪里能够看出来配置内 ...
- xml中使用foreach遍历对象
如果是一个带数据的List对象 <select id="selectProductMSTList" resultType="java.util.Map" ...
- 在masterpage中添加对usercontrol的引用
在masterpage中添加对usercontrol的引用的方式: <%@ Register Src="/_controltemplates/15/Excellent Employee ...
- 保留关键字 (Transact-SQL)
https://msdn.microsoft.com/zh-cn/library/ms189822(v=sql.120).aspx Microsoft SQL Server 将保留关键字用于定义.操作 ...
- iOS 动画基础
原文:http://www.cnblogs.com/lujianwenance/p/5733846.html 今天说一下有关动画的基础,希望能帮助到一些刚接触iOS动画或者刚开始学习iOS的同学, ...
- 关于arcgis 9.3破解问题详解
对于初学GIS的同学,安装软件可能会遇到各种各样的问题,对于photoshop,autocad,sketchup,3dmax等软件我们的我们无非是输入特定序列号或者用工具随机生成特定序列号就可以破解, ...
- HTTP 417解决方案
在一次模拟HTPP请求时,本人在项目中的一般处理程序中调用客户接口返回非成功的结果.为了方便调试,所以将核心代码拷贝至控制台中进逐个调试. 在控制台中,启动调试时提示: 未经处理的异常: S ...
- 封装一个自己的 Ajax小框架
框架代码如下: // 使用封装方法的人只关心提供http的请求方法,url地址,数据,成功和失败的回调方法 // 类的构造定义,主要职责就是新建出 XMLHttpRequest 对象 var MyXM ...
- 2015-01-27-从实验出发理解buffer与cache区别-吴伟顺
通过du(find) 与 cat 体现buffer与cache差异实验: 实验表明: 1 通常 buffer << cache 2 "文件系统"相关内容(ino ...