http://codeforces.com/problemset/problem/148/D

D. Bag of mice
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

The dragon and the princess are arguing about what to do on the New Year's Eve. The dragon suggests flying to the mountains to watch fairies dancing in the moonlight, while the princess thinks they should just go to bed early. They are desperate to come to
an amicable agreement, so they decide to leave this up to chance.

They take turns drawing a mouse from a bag which initially contains w white and b black
mice. The person who is the first to draw a white mouse wins. After each mouse drawn by the dragon the rest of mice in the bag panic, and one of them jumps out of the bag itself (the princess draws her mice carefully and doesn't scare other mice). Princess
draws first. What is the probability of the princess winning?

If there are no more mice in the bag and nobody has drawn a white mouse, the dragon wins. Mice which jump out of the bag themselves are not considered to be drawn (do not define the winner). Once a mouse has left the bag, it never returns to it. Every mouse
is drawn from the bag with the same probability as every other one, and every mouse jumps out of the bag with the same probability as every other one.

Input

The only line of input data contains two integers w and b (0 ≤ w, b ≤ 1000).

Output

Output the probability of the princess winning. The answer is considered to be correct if its absolute or relative error does not exceed10 - 9.

Sample test(s)
input
1 3
output
0.500000000
input
5 5
output
0.658730159
Note

Let's go through the first sample. The probability of the princess drawing a white mouse on her first turn and winning right away is 1/4. The probability of the dragon drawing a black mouse and not winning on his first turn is 3/4 * 2/3 = 1/2. After this there
are two mice left in the bag — one black and one white; one of them jumps out, and the other is drawn by the princess on her second turn. If the princess' mouse is white, she wins (probability is 1/2 * 1/2 = 1/4), otherwise nobody gets the white mouse, so
according to the rule the dragon wins

/*题意:
原来袋子里有w仅仅白鼠和b仅仅黑鼠
龙和王妃轮流从袋子里抓老鼠。谁先抓到白色老师谁就赢。
王妃每次抓一仅仅老鼠,龙每次抓完一仅仅老鼠之后会有一仅仅老鼠跑出来。
每次抓老鼠和跑出来的老鼠都是随机的。
如果两个人都没有抓到白色老鼠则龙赢。 王妃先抓。
问王妃赢的概率。 分析:如果dp[i][j]表示轮到王妃抓老鼠时面对剩余i仅仅白鼠和j仅仅黑鼠的胜率
则dp[i][j]能够转化到下面四种情况:
1.王妃胜利,转化概率为i/(i+j)
2.dp[i-1][j-2]---王妃抓黑鼠,龙抓黑鼠,逃跑白鼠,转化概率是j/(i+j) * (j-1)/(i+j-1) * i/(i+j-2)
3.dp[i-1][j-1]---王妃抓到黑鼠,龙抓到白鼠,输! ,转化概率为j/(i+j) * i/(i+j-1)//这不能到达,到达就输了
4.dp[i][j-3]--王妃抓到黑鼠,龙抓到黑鼠,逃跑黑鼠,转化率为j/(i+j) * (j-1)/(i+j-1) * (j-2)/(i+j-2)
*/
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <queue>
#include <algorithm>
#include <map>
#include <cmath>
#include <iomanip>
#define INF 999999999
typedef long long LL;
using namespace std; const int MAX=1000+10;
int w,b;
double dp[MAX][MAX]; int main(){
while(cin>>w>>b){
for(int i=1;i<=w;++i)dp[i][0]=1;//有白鼠无黑鼠胜率为1
for(int i=0;i<=b;++i)dp[0][i]=0;//无白鼠胜率为0
for(int i=1;i<=w;++i){
for(int j=1;j<=b;++j){
dp[i][j]=i*1.0/(i+j);
//dp[i][j]+=j*1.0/(i+j) * i*1.0/(i+j-1) * dp[i-1][j-1];
if(j>=2)dp[i][j]+=j*1.0/(i+j) * (j-1)*1.0/(i+j-1) * i*1.0/(i+j-2) * dp[i-1][j-2];
if(j>=3)dp[i][j]+=j*1.0/(i+j) * (j-1)*1.0/(i+j-1) * (j-2)*1.0/(i+j-2) * dp[i][j-3];
}
}
printf("%.9f\n",dp[w][b]);
}
return 0;
}

codeforces 148D之概率DP的更多相关文章

  1. CodeForces 602E【概率DP】【树状数组优化】

    题意:有n个人进行m次比赛,每次比赛有一个排名,最后的排名是把所有排名都加起来然后找到比自己的分数绝对小的人数加一就是最终排名. 给了其中一个人的所有比赛的名次.求这个人最终排名的期望. 思路: 渣渣 ...

  2. codeforces 696C PLEASE 概率dp+公式递推+费马小定理

    题意:有3个杯子,排放一行,刚开始钥匙在中间的杯子,每次操作,将左右两边任意一个杯子进行交换,问n次操作后钥匙在中间杯子的概率 分析:考虑动态规划做法,dp[i]代表i次操作后的,钥匙在中间的概率,由 ...

  3. Codeforces 229E Gifts 概率dp (看题解)

    Gifts 感觉题解写的就是坨不知道什么东西.. 看得这个题解. #include<bits/stdc++.h> #define LL long long #define LD long ...

  4. Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题

    除非特别忙,我接下来会尽可能翻译我做的每道CF题的题面! Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题 题面 胡小兔和司公子都认为对方是垃圾. 为了决出谁才是垃 ...

  5. codeforces 148D Bag of mice(概率dp)

    题意:给你w个白色小鼠和b个黑色小鼠,把他们放到袋子里,princess先取,dragon后取,princess取的时候从剩下的当当中任意取一个,dragon取得时候也是从剩下的时候任取一个,但是取完 ...

  6. codeforces 148D 概率DP

    题意: 原来袋子里有w仅仅白鼠和b仅仅黑鼠 龙和王妃轮流从袋子里抓老鼠. 谁先抓到白色老师谁就赢. 王妃每次抓一仅仅老鼠,龙每次抓完一仅仅老鼠之后会有一仅仅老鼠跑出来. 每次抓老鼠和跑出来的老鼠都是随 ...

  7. Codeforces #548 (Div2) - D.Steps to One(概率dp+数论)

    Problem   Codeforces #548 (Div2) - D.Steps to One Time Limit: 2000 mSec Problem Description Input Th ...

  8. Codeforces Round #301 (Div. 2) D. Bad Luck Island 概率DP

    D. Bad Luck Island Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/540/pr ...

  9. codeforces 768 D. Jon and Orbs(概率dp)

    题目链接:http://codeforces.com/contest/768/problem/D 题意:一共有k种球,要得到k种不同的球至少一个,q个提问每次提问给出一个数pi,问概率大小大于等于pi ...

随机推荐

  1. 表达式:使用API创建表达式树(1)

    表达式树可使用Expressions类的静态工厂方法来创建.这种用API的方式创建给予我们在编程极大的灵活性,MSDN上关于表达式的例子也不少,但在使用过程中还是会遇到许多麻烦,对有的表达式类,介绍得 ...

  2. Wpf 数据绑定实例2

    1.简单DataContext绑定 //绑定对象 label.DataContext = Process.GetCurrentProcess(); Xaml代码: <Grid> <G ...

  3. cer, pfx 创建,并且读取公钥/密钥,加解密 (C#程序实现)

    PKI技术(public key infrastructure)里面,cer文件和pfx文件是很常见的.通常cer文件里面保存着公钥以及用户的一些信息,pfx里面则含有私钥和公钥. 用makecert ...

  4. JavaScript_ECMA5数组新特性

    var arr = [ 1, 2, 3, 4, 5, 4, 3, 2, 1 ]; 新加位置的方法: indexOf lastIndexOf1.1个参数的时候表示传值 返回索引位置(index从0开始) ...

  5. Hibernate的CRUD

    1.CRUD: C:sesion.save() R:session.get()? session.load() D:session.delete() U:session.update() 2.读取数据 ...

  6. 初涉JavaScript模式 (6) : 原型模式 【二】

    原型与in操作符 有两种方式使用in操作符:单独使用和在for-in循环中使用. 在单独使用时,in操作符会遍历实例公开(可枚举)的属性,如果找到该指定属性则返回true,无论该指定属性是存在与实例中 ...

  7. 002.AngularJs调用Restful实现CRUD

    本节我们主要给大家介绍AngularJs如何调用Restful,实现数据的CRUD. 主要用到的技术: 后端:ASP.NET WebApi + SQLServer2008 前端:AngularJs,B ...

  8. js监控键盘大小写事件

    JavaScript键盘事件侦听    在使用JavaScript做WEB键盘事件侦听捕获时,主要采用onkeypress.onkeydown.onkeyup三个事件进行出来.该三个事 件的执行顺序如 ...

  9. C++explicit关键字

    在C++中,explicit关键字用来修饰类的构造函数,被修饰的构造函数的类,不能发生相应的隐式类型转换,只能以显示的方式进行类型转换. explicit使用注意事项: *     explicit  ...

  10. 实验五:分析system_call中断处理过程

    原创作品转载请注明出处<Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 如果我写的不好或者有误的地方请留言 ...