Hadoop MapReduce Next Generation - Setting up a Single Node Cluster
Hadoop MapReduce Next Generation - Setting up a Single Node Cluster.
Purpose
This document describes how to set up and configure a single-node Hadoop installation so that you can quickly perform simple operations using Hadoop MapReduce and the Hadoop Distributed File System (HDFS).
Prerequisites
Supported Platforms
- GNU/Linux is supported as a development and production platform. Hadoop has been demonstrated on GNU/Linux clusters with 2000 nodes.
Required Software
Required software for Linux include:
- Java™ must be installed. Recommended Java versions are described at HadoopJavaVersions.
- ssh must be installed and sshd must be running to use the Hadoop scripts that manage remote Hadoop daemons.
Installing Software
If your cluster doesn't have the requisite software you will need to install it.
For example on Ubuntu Linux:
$ sudo apt-get install ssh
$ sudo apt-get install rsync
Download
To get a Hadoop distribution, download a recent stable release from one of the Apache Download Mirrors.
Prepare to Start the Hadoop Cluster
Unpack the downloaded Hadoop distribution. In the distribution, edit the file etc/hadoop/hadoop-env.sh to define some parameters as follows:
# set to the root of your Java installation
export JAVA_HOME=/usr/java/latest # Assuming your installation directory is /usr/local/hadoop
export HADOOP_PREFIX=/usr/local/hadoop
Try the following command:
$ bin/hadoop
This will display the usage documentation for the hadoop script.
Now you are ready to start your Hadoop cluster in one of the three supported modes:
- Local (Standalone) Mode
- Pseudo-Distributed Mode
- Fully-Distributed Mode
Standalone Operation
By default, Hadoop is configured to run in a non-distributed mode, as a single Java process. This is useful for debugging.
The following example copies the unpacked conf directory to use as input and then finds and displays every match of the given regular expression. Output is written to the given output directory.
$ mkdir input
$ cp etc/hadoop/*.xml input
$ bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.4.1.jar grep input output 'dfs[a-z.]+'
$ cat output/*
Pseudo-Distributed Operation
Hadoop can also be run on a single-node in a pseudo-distributed mode where each Hadoop daemon runs in a separate Java process.
Configuration
Use the following:
# etc/hadoop/core-site.xml: <configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://localhost:9000</value>
</property>
</configuration> # etc/hadoop/hdfs-site.xml: <configuration>
<property>
<name>dfs.replication</name>
<value></value>
</property>
</configuration>
Setup passphraseless ssh
Now check that you can ssh to the localhost without a passphrase:
$ ssh localhost
If you cannot ssh to localhost without a passphrase, execute the following commands:
$ ssh-keygen -t dsa -P '' -f ~/.ssh/id_dsa
$ cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys
Execution
The following instructions are to run a MapReduce job locally. If you want to execute a job on YARN, see YARN on Single Node.
- Format the filesystem:
$ bin/hdfs namenode -format
- Start NameNode daemon and DataNode daemon:
$ sbin/start-dfs.sh
The hadoop daemon log output is written to the $HADOOP_LOG_DIR directory (defaults to $HADOOP_HOME/logs).
- Browse the web interface for the NameNode; by default it is available at:
- NameNode - http://localhost:50070/
- Make the HDFS directories required to execute MapReduce jobs:
$ bin/hdfs dfs -mkdir /user
$ bin/hdfs dfs -mkdir /user/<username> - Copy the input files into the distributed filesystem:
$ bin/hdfs dfs -put etc/hadoop input
- Run some of the examples provided:
$ bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.4.1.jar grep input output 'dfs[a-z.]+'
- Examine the output files:
Copy the output files from the distributed filesystem to the local filesystem and examine them:
$ bin/hdfs dfs -get output output
$ cat output/*or
View the output files on the distributed filesystem:
$ bin/hdfs dfs -cat output/*
- When you're done, stop the daemons with:
$ sbin/stop-dfs.sh
YARN on Single Node
You can run a MapReduce job on YARN in a pseudo-distributed mode by setting a few parameters and running ResourceManager daemon and NodeManager daemon in addition.
The following instructions assume that 1. ~ 4. steps of the above instructions are already executed.
- Configure parameters as follows:
etc/hadoop/mapred-site.xml:
<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration>etc/hadoop/yarn-site.xml:
<configuration>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
</configuration> - Start ResourceManager daemon and NodeManager daemon:
$ sbin/start-yarn.sh
- Browse the web interface for the ResourceManager; by default it is available at:
- ResourceManager - http://localhost:8088/
- Run a MapReduce job.
- When you're done, stop the daemons with:
$ sbin/stop-yarn.sh
Hadoop MapReduce Next Generation - Setting up a Single Node Cluster的更多相关文章
- Setting up a Single Node Cluster Hadoop on Ubuntu/Debian
Hadoop: Setting up a Single Node Cluster. Hadoop: Setting up a Single Node Cluster. Purpose Prerequi ...
- CentOS6.4安装Hadoop2.0.5 alpha - Single Node Cluster
1.安装JDK7 rpm到/usr/java/jdk1.7.0_40,并建立软链接/usr/java/default到/usr/java/jdk1.7.0_40 [root@server-308 ~] ...
- Hadoop Single Node Setup(hadoop本地模式和伪分布式模式安装-官方文档翻译 2.7.3)
Purpose(目标) This document describes how to set up and configure a single-node Hadoop installation so ...
- Writing an Hadoop MapReduce Program in Python
In this tutorial I will describe how to write a simpleMapReduce program for Hadoop in thePython prog ...
- Hadoop MapReduce编程学习
一直在搞spark,也没时间弄hadoop,不过Hadoop基本的编程我觉得我还是要会吧,看到一篇不错的文章,不过应该应用于hadoop2.0以前,因为代码中有 conf.set("map ...
- 用Python语言写Hadoop MapReduce程序Writing an Hadoop MapReduce Program in Python
In this tutorial I will describe how to write a simple MapReduce program for Hadoop in the Python pr ...
- Hadoop mapreduce自定义分组RawComparator
本文发表于本人博客. 今天接着上次[Hadoop mapreduce自定义排序WritableComparable]文章写,按照顺序那么这次应该是讲解自定义分组如何实现,关于操作顺序在这里不多说了,需 ...
- 下一代Apache Hadoop MapReduce框架的架构
背景 随着集群规模和负载增加,MapReduce JobTracker在内存消耗,线程模型和扩展性/可靠性/性能方面暴露出了缺点,为此需要对它进行大整修. 需求 当我们对Hadoop MapReduc ...
- Hadoop MapReduce编程 API入门系列之join(二十六)(未完)
不多说,直接上代码. 天气记录数据库 Station ID Timestamp Temperature 气象站数据库 Station ID Station Name 气象站和天气记录合并之后的示意图如 ...
随机推荐
- ActiveMQ, Qpid, HornetQ and RabbitMQ in Comparison
国内私募机构九鼎控股打造APP,来就送 20元现金领取地址:http://jdb.jiudingcapital.com/phone.html内部邀请码:C8E245J (不写邀请码,没有现金送)国内私 ...
- 统一建模语言(UML) 版本 2.0
原文: http://www.ibm.com/developerworks/cn/rational/321_uml/ 简介 参考 UML 基础系列的其他文章和教程 UML基础: 统一建模语言简介 UM ...
- 为虚机分配指定的IP
在新建虚机的时候,在此处指定IP,则虚机创建完成后,会使用该IP(需要在地址池范围内)
- Ubuntu jdk报Picked up JAVA_TOOL_OPTIONS信息解决
下面是摘自http://www.cnblogs.com/coderbean/p/4522182.html 以下是我在网上找了好久找到的: Ubuntu jdk报Picked up JAVA_TOOL_ ...
- css匹配原理与优化
一. 匹配原理 浏览器CSS匹配不是从左到右进行查找,而是从右到左进行查找.比如之前说的 DIV#divBox p span.red{color:red;},浏览器的查找顺序如下:先查找 html 中 ...
- java18 任务调度
任务调度; Timer类, /** 了解 Timer() schedule(TimerTask task, Date time) schedule(TimerTask task, Date first ...
- PERCONA-TOOLKIT 工具的安装与使用1
-c times Sun Jul :: CST Tracing process ID total pread read pwrite write fsync open close lseek fcnt ...
- 进程控制之vfork函数
vfork函数的调用序列和返回值与fork相同,但两者的语义不同. vfork用于创建一个新进程,而新进程的目的是exec一个新程序.vfork和fork一样都创建一个子进程,但是它并不将父进程的地址 ...
- 开启、关闭数据库mysql
1.命令行 net start mysql net start mysql 2.点控制面板→管理→服务 招到mysql 3.找到安装目录下的bin目录
- S-DES加密
Simplified Data Encryption Standard S-DES 是一个供教学的非安全的加密算法,它与DES的特性和结构类似,但参数小,明文分组为8位,主密钥分组为10位,采用两轮迭 ...