Hadoop MapReduce Next Generation - Setting up a Single Node Cluster.

Purpose

This document describes how to set up and configure a single-node Hadoop installation so that you can quickly perform simple operations using Hadoop MapReduce and the Hadoop Distributed File System (HDFS).

Prerequisites

Supported Platforms

  • GNU/Linux is supported as a development and production platform. Hadoop has been demonstrated on GNU/Linux clusters with 2000 nodes.

Required Software

Required software for Linux include:

  1. Java™ must be installed. Recommended Java versions are described at HadoopJavaVersions.
  2. ssh must be installed and sshd must be running to use the Hadoop scripts that manage remote Hadoop daemons.

Installing Software

If your cluster doesn't have the requisite software you will need to install it.

For example on Ubuntu Linux:

  $ sudo apt-get install ssh
$ sudo apt-get install rsync

Download

To get a Hadoop distribution, download a recent stable release from one of the Apache Download Mirrors.

Prepare to Start the Hadoop Cluster

Unpack the downloaded Hadoop distribution. In the distribution, edit the file etc/hadoop/hadoop-env.sh to define some parameters as follows:

  # set to the root of your Java installation
export JAVA_HOME=/usr/java/latest # Assuming your installation directory is /usr/local/hadoop
export HADOOP_PREFIX=/usr/local/hadoop

Try the following command:

  $ bin/hadoop

This will display the usage documentation for the hadoop script.

Now you are ready to start your Hadoop cluster in one of the three supported modes:

  • Local (Standalone) Mode
  • Pseudo-Distributed Mode
  • Fully-Distributed Mode

Standalone Operation

By default, Hadoop is configured to run in a non-distributed mode, as a single Java process. This is useful for debugging.

The following example copies the unpacked conf directory to use as input and then finds and displays every match of the given regular expression. Output is written to the given output directory.

$ mkdir input
$ cp etc/hadoop/*.xml input
$ bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.4.1.jar grep input output 'dfs[a-z.]+'
$ cat output/*

Pseudo-Distributed Operation

Hadoop can also be run on a single-node in a pseudo-distributed mode where each Hadoop daemon runs in a separate Java process.

Configuration

Use the following:

# etc/hadoop/core-site.xml:

<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://localhost:9000</value>
</property>
</configuration> # etc/hadoop/hdfs-site.xml: <configuration>
<property>
<name>dfs.replication</name>
<value></value>
</property>
</configuration>

Setup passphraseless ssh

Now check that you can ssh to the localhost without a passphrase:

 $ ssh localhost

If you cannot ssh to localhost without a passphrase, execute the following commands:

$ ssh-keygen -t dsa -P '' -f ~/.ssh/id_dsa
$ cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys

Execution

The following instructions are to run a MapReduce job locally. If you want to execute a job on YARN, see YARN on Single Node.

  1. Format the filesystem:

      $ bin/hdfs namenode -format
  2. Start NameNode daemon and DataNode daemon:
      $ sbin/start-dfs.sh

    The hadoop daemon log output is written to the $HADOOP_LOG_DIR directory (defaults to $HADOOP_HOME/logs).

  3. Browse the web interface for the NameNode; by default it is available at:
    • NameNode - http://localhost:50070/
  4. Make the HDFS directories required to execute MapReduce jobs:
      $ bin/hdfs dfs -mkdir /user
    $ bin/hdfs dfs -mkdir /user/<username>
  5. Copy the input files into the distributed filesystem:
      $ bin/hdfs dfs -put etc/hadoop input
  6. Run some of the examples provided:
      $ bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.4.1.jar grep input output 'dfs[a-z.]+'
  7. Examine the output files:

    Copy the output files from the distributed filesystem to the local filesystem and examine them:

      $ bin/hdfs dfs -get output output
    $ cat output/*

    or

    View the output files on the distributed filesystem:

      $ bin/hdfs dfs -cat output/*
  8. When you're done, stop the daemons with:
      $ sbin/stop-dfs.sh

YARN on Single Node

You can run a MapReduce job on YARN in a pseudo-distributed mode by setting a few parameters and running ResourceManager daemon and NodeManager daemon in addition.

The following instructions assume that 1. ~ 4. steps of the above instructions are already executed.

  1. Configure parameters as follows:

    etc/hadoop/mapred-site.xml:

    <configuration>
    <property>
    <name>mapreduce.framework.name</name>
    <value>yarn</value>
    </property>
    </configuration>

    etc/hadoop/yarn-site.xml:

    <configuration>
    <property>
    <name>yarn.nodemanager.aux-services</name>
    <value>mapreduce_shuffle</value>
    </property>
    </configuration>
  2. Start ResourceManager daemon and NodeManager daemon:
      $ sbin/start-yarn.sh
  3. Browse the web interface for the ResourceManager; by default it is available at:
    • ResourceManager - http://localhost:8088/
  4. Run a MapReduce job.
  5. When you're done, stop the daemons with:
      $ sbin/stop-yarn.sh

Hadoop MapReduce Next Generation - Setting up a Single Node Cluster的更多相关文章

  1. Setting up a Single Node Cluster Hadoop on Ubuntu/Debian

    Hadoop: Setting up a Single Node Cluster. Hadoop: Setting up a Single Node Cluster. Purpose Prerequi ...

  2. CentOS6.4安装Hadoop2.0.5 alpha - Single Node Cluster

    1.安装JDK7 rpm到/usr/java/jdk1.7.0_40,并建立软链接/usr/java/default到/usr/java/jdk1.7.0_40 [root@server-308 ~] ...

  3. Hadoop Single Node Setup(hadoop本地模式和伪分布式模式安装-官方文档翻译 2.7.3)

    Purpose(目标) This document describes how to set up and configure a single-node Hadoop installation so ...

  4. Writing an Hadoop MapReduce Program in Python

    In this tutorial I will describe how to write a simpleMapReduce program for Hadoop in thePython prog ...

  5. Hadoop MapReduce编程学习

    一直在搞spark,也没时间弄hadoop,不过Hadoop基本的编程我觉得我还是要会吧,看到一篇不错的文章,不过应该应用于hadoop2.0以前,因为代码中有  conf.set("map ...

  6. 用Python语言写Hadoop MapReduce程序Writing an Hadoop MapReduce Program in Python

    In this tutorial I will describe how to write a simple MapReduce program for Hadoop in the Python pr ...

  7. Hadoop mapreduce自定义分组RawComparator

    本文发表于本人博客. 今天接着上次[Hadoop mapreduce自定义排序WritableComparable]文章写,按照顺序那么这次应该是讲解自定义分组如何实现,关于操作顺序在这里不多说了,需 ...

  8. 下一代Apache Hadoop MapReduce框架的架构

    背景 随着集群规模和负载增加,MapReduce JobTracker在内存消耗,线程模型和扩展性/可靠性/性能方面暴露出了缺点,为此需要对它进行大整修. 需求 当我们对Hadoop MapReduc ...

  9. Hadoop MapReduce编程 API入门系列之join(二十六)(未完)

    不多说,直接上代码. 天气记录数据库 Station ID Timestamp Temperature 气象站数据库 Station ID Station Name 气象站和天气记录合并之后的示意图如 ...

随机推荐

  1. 【S13】vector和string优先于动态分配的内存

    1.使用new动态分配内存,必须承担如下责任: a.使用delete释放内存: b.确保使用了正确的形式,delete与new的形式要匹配: c.不能重复delete. 2.使用vector和stri ...

  2. 亿级数据时,内存性能低于IO性能

    最近因项目需要,需要生成有0到99999999共1亿的不重复数,于是想着直接将这些数据生成为一个文件就可以了,代码如. private void generate(string savePath) { ...

  3. git版本号管理工具的上手

    git是一个分布式的版本号管理工具 和其它集中式版本号管理 工具相比具有下面长处: 1.能够在不联网的情况下开发 2.能够方便的建立本地分支 3.本地化的日志,高速获得信息 git命令的使用 mkdi ...

  4. 【转】Android 最火的快速开发框架XUtils

    原文:http://blog.csdn.net/rain_butterfly/article/details/37812371 最近搜了一些框架供初学者学习,比较了一下XUtils是目前git上比较活 ...

  5. Android两个控件叠在一起,如何让被挡住的控件显示出来

    Android两个控件叠在一起,如何让被挡住的控件显示出来 问题 : 两个控件叠在一起,如何让被挡住的控件显示出来? 比如A,B两个控件,A被B挡住,目前A要显示出来,B不能被隐藏,A的高度只有那么一 ...

  6. 【代码优化】坚持使用Override注解

    对于传统程序猿,注解里面最重要的就是Override注解了.这里的注解,都是指仅仅能用在方法中的声明, 她表示被注解的方法用于覆盖了父类的一个声明,假设坚持使用这个注解,能够防止一大类的非法错误. & ...

  7. 解锁Dagger2使用姿势(一)

    毫无疑问,Dagger2的 上手是有门槛的,有门槛是因为它里边的概念多,用起来复杂,可是一旦你学会了Dagger2的使用,你一定会爱不释手的.与ButterKnife和AndroidAnnotatio ...

  8. Android(java)学习笔记144:Android音视频录制类MediaRecorder用法举例

    Android语音录制可以通过MediaRecorder和AudioRecorder.MediaRecorder本来是多媒体录制控件,可以同时录制视频和语音,当不指定视频源时就只录制语音(默认录制语言 ...

  9. mysql mac 上启动

    launchctl load -w ~/Library/LaunchAgents/homebrew.mxcl.mariadb.plist 中内容: <string>/usr/local/o ...

  10. sbit命令行中运行scala脚本

    一般sbit编译器采成了scala运行工具.启动sbit命令行,输入console,命令行自动切换到scala编辑器面. scala>:paste 然后手动将XXX.scala中的代码拷贝到界面 ...