2018-08-28 17:51:04

问题描述:

问题求解:

本题是一个求最优解的问题,很自然的会想到动态规划来进行解决。但是刚开始还是陷入了僵局,直到看到了hint:LIS,才有了进一步的思路。下面是最初的一个解法。使用的是map来记录信息。

    public List<Integer> largestDivisibleSubset(int[] nums) {
if (nums.length == 0) return new ArrayList<>();
Arrays.sort(nums);
Map<Integer, List<Integer>> map = new HashMap<>();
for (int i = 0; i < nums.length; i++) {
List<Integer> tmp = null;
int maxlen = 0;
for (int j = 0; j < i; j++) {
if (nums[i] % nums[j] == 0 && maxlen < map.get(nums[j]).size()) {
tmp = new ArrayList<>(map.get(nums[j]));
maxlen = tmp.size();
}
}
if (tmp == null) tmp = new ArrayList<>();
tmp.add(nums[i]);
map.put(nums[i], tmp);
}
int maxlen = 0;
List<Integer> res = null;
for (Integer i : map.keySet()) {
if (map.get(i).size() > maxlen) {
res = map.get(i);
maxlen = res.size();
}
}
return res;
}

当然上述的代码效率不是很高,我们可以使用两个数组来进行维护。

    public List<Integer> largestDivisibleSubset(int[] nums) {
List<Integer> res = new ArrayList<>();
if (nums.length == 0) return res;
Arrays.sort(nums);
int[] dp = new int[nums.length];
int[] prev = new int[nums.length];
int max = 0;
int index = -1;
for (int i = 0; i < nums.length; i++) {
prev[i] = -1;
dp[i] = 1;
for (int j = 0; j < i; j++) {
if (nums[i] % nums[j] == 0 && dp[j] + 1 > dp[i]) {
dp[i] = dp[j] + 1;
prev[i] = j;
}
}
if (dp[i] > max) {
max = dp[i];
index = i;
}
}
while (index != -1) {
res.add(nums[index]);
index = prev[index];
}
return res;
}

动态规划-最长可互除子序列 Largest Divisible Subset的更多相关文章

  1. 【leetcode】368. Largest Divisible Subset

    题目描述: Given a set of distinct positive integers, find the largest subset such that every pair (Si, S ...

  2. Leetcode 368. Largest Divisible Subset

    Given a set of distinct positive integers, find the largest subset such that every pair (Si, Sj) of ...

  3. 【LeetCode】368. Largest Divisible Subset 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址:https://leetcode.com/problems/largest-d ...

  4. [LeetCode] Largest Divisible Subset 最大可整除的子集合

    Given a set of distinct positive integers, find the largest subset such that every pair (Si, Sj) of ...

  5. LeetCode "Largest Divisible Subset" !

    Very nice DP problem. The key fact of a mutual-divisible subset: if a new number n, is divisible wit ...

  6. Largest Divisible Subset

    Given a set of distinct positive integers, find the largest subset such that every pair (Si, Sj) of ...

  7. 368. Largest Divisible Subset -- 找出一个数组使得数组内的数能够两两整除

    Given a set of distinct positive integers, find the largest subset such that every pair (Si, Sj) of ...

  8. [Swift]LeetCode368. 最大整除子集 | Largest Divisible Subset

    Given a set of distinct positive integers, find the largest subset such that every pair (Si, Sj) of ...

  9. Largest Divisible Subset -- LeetCode

    Given a set of distinct positive integers, find the largest subset such that every pair (Si, Sj) of ...

随机推荐

  1. yii2关联查询两组一对一

    public function getMember1(){        return $this->hasOne(Member::className(), ['wechat_id' => ...

  2. zw版【转发·台湾nvp系列Delphi例程】HALCON SigmaImage2

    zw版[转发·台湾nvp系列Delphi例程]HALCON SigmaImage2 procedure TForm1.Button1Click(Sender: TObject);var op: HOp ...

  3. HDU 1586 log 的运用

    log函数的应用,因为 log(a^b)=b*log(a); log(a*b)=log(a)+log(b); 比如 log10(123456789)==log10(1.23456789)+8; log ...

  4. EditPlus 4.3.2560 中文版已经发布

    新的版本修复了选中文本操作的一些问题. 下载连接在左上角!

  5. python getctime() 文件最后一次的改变时间

    Return the metadata change time of a file,reported by os.stat() def mm(): file_name=r'c:\temp.txt' f ...

  6. quartz-job实现实时或定时发送短信任务

    存放调度器(Job 和 Trigger)信息的xml配置文件: 这是某个指定的要实现的定时任务: <!-- 每天给项目经理发送短信避免短信服务挂了 定时每天08:30执行--> <j ...

  7. 2018-2019-2 20165209 《网络对抗技术》Exp7: 网络欺诈防范

    2018-2019-2 20165209 <网络对抗技术>Exp7: 网络欺诈防范 1 基础问题回答和实验内容 1.1基础问题回答 (1)通常在什么场景下容易受到DNS spoof攻击. ...

  8. IO(File)

    1. 一个File类的对象,表示了磁盘上的文件或目录 2. File类提供了与平台无关的方法来对磁盘上的文件或目录进行操作 3. File对象可用来获取或处理与磁盘文件相关的信息,如:权限,时间,日期 ...

  9. ajax请求头设置 | header 传token

    $('.w-entry-btn').on('tap',function(){ var urlAddress = '/api/address'; var valToken = JSON.parse(lo ...

  10. Linux基础命令---yes

    yes 反复的输出指定的字符串,直到手动停止.此命令的适用范围:RedHat.RHEL.Ubuntu.CentOS.SUSE.openSUSE.Fedora.   1.语法      yes [STR ...