合并果子(NOIP2004)
合并果子(NOIP2004)
【问题描述】
在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了
不同的堆。多多决定把所有的果子合成一堆。每一次合并,多多可以把两堆果子
合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过
n-1次合并之后,就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次
合并所耗体力之和。
因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省
体力。假定每个果子重量都为1,并且已知果子的种类数和每种果子的数目,
你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的
体力耗费值。
例如有3种果子,数目依次为1,2,9。可以先将 1、2堆合并,新堆数目为3,
耗费体力为3。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为12,
耗费体力为 12。所以多多总共耗费体力=3+12=15。可以证明15为最小的体力
耗费值。
【输入文件】
输入文件fruit.in包括两行,
第一行是一个整数n(1 <= n <= 10000),表示果子的种类数。
第二行包含n个整数,用空格分隔,第i个整数ai(1 <= ai <= 20000)
是第i种果子的数目。
【输出文件】
输出文件fruit.out包括一行,
这一行只包含一个整数,也就是最小的体力耗费值。
输入数据保证这个值小于231。
【样例输入】
3
1 2 9
【样例输出】
15
【数据规模】
对于30%的数据,保证有n <= 1000;
对于50%的数据,保证有n <= 5000;
对于全部的数据,保证有n <= 10000。
分析:
咋一看,觉得此题目和经典的石子合并很相似,其实不然,石子的合并必须是相邻的2堆,要按照一定得顺序进行合并,而果子合并则不需要是相邻的,可以采取以下的步骤进行合并:
(1)先将所有的数按从大到小的顺序排序,取最后两个数合并;(之所以从大到小排列,是为了方便后面的数组维护)
(2)将两个数的和插入到数组中,(插入排序)随时保持数组有序;(如果在整理数组的时候仍然调用快速排序,则速度会降慢,因为此时的数组是有序的,只需要将合并后的数放入到有序数组的适当位置,使用插入排序更合适。)
(3)合并过程中做数组维护,合并到一堆时结束。
#include<stdio.h> #include<stdlib.h> int cmp(const void *a,const void *b) { return *(int *)b- *(int *)a; } int main() { int n,*a; int i; int sum,temp,j; freopen("fruit1.in","r",stdin); freopen("fruit1.txt","w",stdout); scanf("%d",&n); a=(int *)malloc(n*sizeof(int)); ;i<n;i++) { scanf("%d",a+i); } //将所有堆果子按数量从大到小排序 qsort(a,n,sizeof(int),cmp); //从后往前扫描,每一次合并得到一个新的值temp后,把temp累加到sum //然后把temp插入到数组合适的位置 //重复上述过程n-1次,最后sum的值就是所求答案 sum=; ;i>;i--) { temp=a[i]+a[i-]; sum+=temp; ;j>=;j--) { if(temp>a[j]) { a[j+]=a[j]; } else { a[j+]=temp; break; } } ) a[]=temp; } printf("%d\n",sum); free(a); ; }
合并果子(NOIP2004)的更多相关文章
- 加强版:合并果子[NOIP2004]
题目 链接:https://ac.nowcoder.com/acm/contest/26887/1001 来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 131072K, ...
- NC16663 [NOIP2004]合并果子
NC16663 [NOIP2004]合并果子 题目 题目描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可 ...
- NOIP2004合并果子
题目描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和.可 ...
- [luoguP1090][Noip2004]合并果子
合并果子 首先来看一下题目: (OI2004合并果子) [题目描述] 果园里,多多已经将所有的果子打了下来,而且按果子的 ...
- [Noip2004][Day ?][T?]合并果子(?.cpp)
题目描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和.可 ...
- [NOIP2004] 提高组 洛谷P1090 合并果子
题目描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和.可 ...
- 合并果子 (codevs 1063) 题解
[问题描述] 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和 ...
- 代码源 每日一题 分割 洛谷 P6033合并果子
题目链接:切割 - 题目 - Daimayuan Online Judge 数据加强版链接: [NOIP2004 提高组] 合并果子 加强版 - 洛谷 题目描述 有一个长度为 ∑ai 的木板,需要 ...
- 【noip 2004】 合并果子
noip2016结束后的第一份代码--优先队列的练习 合并果子 原题在这里 #include <iostream> #include <queue> #include < ...
随机推荐
- 样条之CatmullRom
所谓样条曲线是指给定一组控制点而得到一条曲线,曲线的大致形状由这些点予以控制,一般可分为插值样条和逼近样条两种,插值样条通常用于数字化绘图或动画的设计,逼近样条一般用来构造物体的表面.CatmullR ...
- android adb源码分析(1)
ADB是Android debug bridge的缩写,它使用PC机可以通过USB或网络与android设备通讯. adb的源码位于system/core/adb目录下,先来看下编译脚本Android ...
- Pytorch之CrossEntropyLoss() 与 NLLLoss() 的区别
(三)PyTorch学习笔记——softmax和log_softmax的区别.CrossEntropyLoss() 与 NLLLoss() 的区别.log似然代价函数 pytorch loss fun ...
- ASP.NET MVC2之Model Binder
Model Binder在Asp.net MVC中非常简单.简单的说就是你控制器中的Action方法需要参数数据:而这些参数数据包含在HTTP请求中,包括表单上的Value和URL中的参 数等.而Mo ...
- js中各种跨域问题实战小结
什么是跨域?为什么要实现跨域呢? 这是因为JavaScript出于安全方面的考虑,不允许跨域调用其他页面的对象.也就是说只能访问同一个域中的资源.我觉得这就有必要了解下javascript中的同源 ...
- 添加PMD插件扫描潜在的bug
上一节使用checkstyle来规范你的项目主要解决了代码编码规范问题,比如缩进换行等.这次继续代码健康工具类PMD. 什么是PMD PMD真的不像checkstyle这样的东西所见即所得啊,去官网找 ...
- iOS - 切换图片/clip subview/iCarousel
源代码:点击打开链接 这个图片展示的时候,我只想让它在蓝色的view上展示..就需要去设置view的一个属性clip subview..把这个属性打勾...view有个clip subview属性,选 ...
- Wide and Deep Learning Model
https://blog.csdn.net/starzhou/article/details/78845931 The Wide and Deep Learning Model(译文+Tensorlf ...
- [转]nodejs深入学(7)理解Buffer
原文: https://www.jianshu.com/p/e3f14cdf78f1 --------------------------------------------------------- ...
- VS2008 解决Unable to copy file 对路径的访问被拒绝。
在VS2008 + WINDOWS 7 环境下重新生成解决方案时遇到以下问题 Unable to delete file "F:\XX.exe". 对路径"F:\XX.e ...