There are a total of n courses you have to take, labeled from 0 to n-1.

Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]

Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?

Example 1:

Input: 2, [[1,0]]
Output: true
Explanation: There are a total of 2 courses to take.
  To take course 1 you should have finished course 0. So it is possible.

Example 2:

Input: 2, [[1,0],[0,1]]
Output: false
Explanation: There are a total of 2 courses to take.
  To take course 1 you should have finished course 0, and to take course 0 you should
  also have finished course 1. So it is impossible.

Note:

  1. The input prerequisites is a graph represented by a list of edges, not adjacency matrices. Read more about how a graph is represented.
  2. You may assume that there are no duplicate edges in the input prerequisites.

我的理解是这个题就是问, 如果有两门课互为prerequisite课, 那么就False, 否则True, 注意的是这里的互为有可能是中间隔了几门课, 而不是直接的prerequisite, 例如: [(0,1),(2,0),(1,2)], 这里 1 是0 的前置课, 0 是2 的前置课, 所以1是2 的间接前置课, 但是最后一个input说2 是1 的前置课, 所以就矛盾, 不可能完成, return False. 所以思路为, 建一个dictionary, 分别将input 的每个pair(c1, c2)放入dictionary里面, 前置课(c2)为key, 后置课(c1)为value, 不过放入之前要用bfs 判断c1 是否为c2 的前置课, 如果是, 那么矛盾, return False. 否则一直判断到最后的pair, 返回Ture.

12/05/2019 Update: 这个题目实际上是有向图里面找是否有环的问题。用dfs去遍历每个graph的点,可以参考Directed Graph Loop detection and if not have, path to print all path. T: O(n)   S: O(n)

1. Constraints:

1) 实际这里的n对我这个做法没有什么用处, 因为课程id 是unique的.

2. Ideas

BFS:     T: O(n)   number of nodes,     S: O(n^2)

1) init dictionary, d

2) for pair(c1,c2) in prerequisites, use bfs to see if c1 is a prerequisity of c2, if so , return False, else, d[c2].add(c1), and until all pairs been checked. return True

3) bfs: use queue and visited to check whether there is a path from source to target.

3. Code

 class Solution:
def courseSchedule(self, numCourse, prerequisites):
def bfs(d, source, target):
if source not in d: return False
queue, visited = collections.deque([source]), set([source])
while queue:
node = queue.popleft()
if node == target: return True
for each in d[node]:
if each not in visited:
queue.append(each)
visited.add(each)
return False d = collections.defaultdict(set)
for c1, c2 in prerequisites:
if bfs(d,c1, c2): return False
d[c2].add(c1)
return True

4. Test cases:

1) [(0,1),(2,0),(1,2)],  =>   False

[LeetCode] 207 Course Schedule_Medium tag: BFS, DFS的更多相关文章

  1. [LeetCode] 490. The Maze_Medium tag: BFS/DFS

    There is a ball in a maze with empty spaces and walls. The ball can go through empty spaces by rolli ...

  2. [LeetCode] 133. Clone Graph_ Medium tag: BFS, DFS

    Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors. OJ's ...

  3. [LeetCode] 529. Minesweeper_ Medium_ tag: BFS

    Let's play the minesweeper game (Wikipedia, online game)! You are given a 2D char matrix representin ...

  4. [LeetCode] 690. Employee Importance_Easy tag: BFS

    You are given a data structure of employee information, which includes the employee's unique id, his ...

  5. [LeetCode] 733. Flood Fill_Easy tag: BFS

    An image is represented by a 2-D array of integers, each integer representing the pixel value of the ...

  6. [LeetCode] 130. Surrounded Regions_Medium tag: DFS/BFS

    Given a 2D board containing 'X' and 'O' (the letter O), capture all regions surrounded by 'X'. A reg ...

  7. [LeetCode] 849. Maximize Distance to Closest Person_Easy tag: BFS

    In a row of seats, 1 represents a person sitting in that seat, and 0 represents that the seat is emp ...

  8. [LeetCode] 513. Find Bottom Left Tree Value_ Medium tag: BFS

    Given a binary tree, find the leftmost value in the last row of the tree. Example 1: Input: 2 / \ 1 ...

  9. [LeetCode] 821. Shortest Distance to a Character_Easy tag: BFS

    Given a string S and a character C, return an array of integers representing the shortest distance f ...

随机推荐

  1. Esper学习之十二:EPL语法(八)

    今天的内容十分重要,在Esper的应用中是十分常用的功能之一.它是一种事件集合,我们可以对这个集合进行增删查改,所以在复杂的业务场景中我们肯定不会缺少它.它就是Named Window. 由于本篇篇幅 ...

  2. 视频播放效果--video.js播放mp4文件

    HTML5的标签 video 支持的mp4编码为视频编码 H.264 音频AAC 参考网址 http://www.w3school.com.cn/html5/html_5_video.asp 视频格式 ...

  3. 常见的mysql 进程state<转自网络>

    Analyzing 线程是对MyISAM 表的统计信息做分析(例如, ANALYZE TABLE ). checking permissions 线程是检查服务器是否具有所需的权限来执行该语句. Ch ...

  4. Elasticsearch学习之Java操作1

    1. Elasticsearch为Java用户提供了两种内置客户端 1.1 节点客户端(node client): 节点客户端以无数据节点(none data node)身份加入集群,换言之,它自己不 ...

  5. nginx(一)----ubuntu14.04下安装nginx

    /** * lihaibo * 文章内容都是根据自己工作情况实践得出. *如有错误,请指正 *转载请注明出处 */ 此文章中用到的软件下载地址: 链接: http://pan.baidu.com/s/ ...

  6. elk单台环境搭建

    一.简介1.核心组成ELK由Elasticsearch.Logstash和Kibana三部分组件组成:Elasticsearch是个开源分布式搜索引擎,它的特点有:分布式,零配置,自动发现,索引自动分 ...

  7. Canvas裁剪Clip和Region、RegionIterator

    extends:http://blog.csdn.net/lonelyroamer/article/details/8349601 裁剪功能由Canvas提供的一系列的clip...方法 和quick ...

  8. C语言中的数组的使用——混乱的内存管理

    在C语言中想要创建数组只能自己malloc或者calloc,数组复制则是memcpy. 这样创建出来的数组在调用时是不会检测数组边界的,即你声明了一个长度为5的数组,却可以访问第6个位置……也可以给第 ...

  9. /etc/vim/vimrc的一个的配置

    (转)Vim 配置文件===/etc/vimrc "===================================================================== ...

  10. zookeeper学习资料汇总

    zookeeper入门介绍   (1) zookeeper入门介绍     (2) zookeeper应用场景介绍 (淘宝团队)   (3) 分布式服务框架 Zookeeper -- 管理分布式环境中 ...