https://blog.csdn.net/felaim/article/details/70300362

1.双向递归神经网络简介

双向递归神经网络(Bidirectional Recurrent Neural Networks, Bi-RNN),是由Schuster和Paliwal于1997年首次提出的,和LSTM是在同一年被提出的。Bi-RNN的主要目标是增加RNN可利用的信息。RNN无法利用某个历史输入的未来信息,Bi-RNN则正好相反,它可以同时使用时序数据中某个输入的历史及未来数据。 
Bi-RNN网络结构的核心是把一个普通的单项的RNN拆成两个方向,一个随时序正向的,一个逆着时序的反向的

感觉上面的图就很直观了,看箭头就可以很容易的发现有正向的箭头和反向的箭头,也就代表时序的不同。注意一点就是,我们发现正向节点和反向节点是不共用的,作为输出的时候是两个节点输出一个结果。

Bi-RNN中的每个RNN单元既可以是传统的RNN,也可以是LSTM单元或者GRU单元,同样也可以叠加多层Bi-RNN,进一步抽象的提炼出特征。如果最后使用作分类任务,我们可以将Bi-RNN的输出序列连接一个全连接层,或者连接全局平均池化Global Average Pooling,最后再接Softmax层,这部分和使用卷积神经网络部分一致,如果有不理解Softmax这些概念的建议看下cs231n系列的课程,里面的概念还是讲解的非常清晰的。

2.Bidirectional LSTM Classifier的代码实现

#coding:utf-8
#代码主要是使用Bidirectional LSTM Classifier对MNIST数据集上进行测试
#导入常用的数据库,并下载对应的数据集
import tensorflow as tf
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/home/frr/Documents/git/my_tensorflow/MNIST_data", one_hot = True) #设置对应的训练参数
learning_rate = 0.01
max_samples = 400000
batch_size = 128
display_step = 10 n_input = 28
n_steps = 28
n_hidden = 256
n_classes = 10 #创建输入x和学习目标y的placeholder,这里我们的样本被理解为一个时间序列,第一个维度是时间点n_step,第二个维度是每个时间点的数据n_inpt。同时,在最后创建Softmax层的权重和偏差
x = tf.placeholder("float", [None, n_steps, n_input])
y = tf.placeholder("float", [None, n_classes]) weights = tf.Variable(tf.random_normal([2 * n_hidden, n_classes]))
biases = tf.Variable(tf.random_normal([n_classes])) #定义Bidirectional LSTM网络的生成函数
def BiRNN(x, weights, biases): x = tf.transpose(x, [1, 0, 2])
x = tf.reshape(x, [-1, n_input])
x = tf.split(x, n_steps) lstm_fw_cell = tf.contrib.rnn.BasicLSTMCell(n_hidden, forget_bias = 1.0)
lstm_bw_cell = tf.contrib.rnn.BasicLSTMCell(n_hidden, forget_bias = 1.0) outputs, _, _ = tf.contrib.rnn.static_bidirectional_rnn(lstm_fw_cell,
lstm_bw_cell, x,
dtype = tf.float32)
return tf.matmul(outputs[-1], weights) + biases #使用tf.nn.softmax_cross_entropy_with_logits进行softmax处理并计算损失
pred = BiRNN(x, weights, biases)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = pred, labels = y))
optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate).minimize(cost) correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) init = tf.global_variables_initializer() #开始执行训练和测试操作
with tf.Session() as sess:
sess.run(init)
step = 1
while step * batch_size < max_samples:
batch_x, batch_y = mnist.train.next_batch(batch_size)
batch_x = batch_x.reshape((batch_size, n_steps, n_input))
sess.run(optimizer, feed_dict = {x: batch_x, y: batch_y})
if step % display_step == 0:
acc = sess.run(accuracy, feed_dict = {x: batch_x, y: batch_y})
loss = sess.run(cost, feed_dict = {x: batch_x, y: batch_y})
print("Iter" + str(step * batch_size) + ", Minibatch Loss = " + \
"{:.6f}".format(loss) + ", Training Accuracy = " + \
"{:.5f}".format(acc))
step += 1
print("Optimization Finished!") test_len = 10000
test_data = mnist.test.images[:test_len].reshape((-1, n_steps, n_input))
test_label = mnist.test.labels[:test_len]
print("Testing Accuracy:", sess.run(accuracy, feed_dict = {x: test_data, y: test_label}))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73

Bidirectional LSTM Classifier在MNIST数据集上的表现虽然不如卷积神经网络,但也达到了一个很不错的水平,LZ亲测正确率在0.980左右哦O(∩_∩)O

TensorFlow实战12:Bidirectional LSTM Classifier的更多相关文章

  1. 学习笔记TF036:实现Bidirectional LSTM Classifier

    双向循环神经网络(Bidirectional Recurrent Neural Networks,Bi-RNN),Schuster.Paliwal,1997年首次提出,和LSTM同年.Bi-RNN,增 ...

  2. 实现Bidirectional LSTM Classifier----深度学习RNN

    双向循环神经网络(Bidirectional Recurrent Neural Networks,Bi-RNN),Schuster.Paliwal,1997年首次提出,和LSTM同年.Bi-RNN,增 ...

  3. TensorFlow实战之实现自编码器过程

    关于本文说明,已同步本人另外一个博客地址位于http://blog.csdn.net/qq_37608890,详见http://blog.csdn.net/qq_37608890/article/de ...

  4. TensorFlow实战之实现AlexNet经典卷积神经网络

    本文根据最近学习TensorFlow书籍网络文章的情况,特将一些学习心得做了总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过. 一.AlexNet模型及其基本原理阐述 1.关于AlexNet ...

  5. TensorFlow实战之Softmax Regression识别手写数字

         关于本文说明,本人原博客地址位于http://blog.csdn.net/qq_37608890,本文来自笔者于2018年02月21日 23:10:04所撰写内容(http://blog.c ...

  6. TensorFlow 实战之实现卷积神经网络

    本文根据最近学习TensorFlow书籍网络文章的情况,特将一些学习心得做了总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过. 一.相关性概念 1.卷积神经网络(ConvolutionNeu ...

  7. Tensorflow实战系列之五:

    打算写实例分割的实战,类似mask-rcnn. Tensorflow实战先写五个系列吧,后面新的技术再添加~~

  8. [Tensorflow实战Google深度学习框架]笔记4

    本系列为Tensorflow实战Google深度学习框架知识笔记,仅为博主看书过程中觉得较为重要的知识点,简单摘要下来,内容较为零散,请见谅. 2017-11-06 [第五章] MNIST数字识别问题 ...

  9. tensorflow笔记:多层LSTM代码分析

    tensorflow笔记:多层LSTM代码分析 标签(空格分隔): tensorflow笔记 tensorflow笔记系列: (一) tensorflow笔记:流程,概念和简单代码注释 (二) ten ...

随机推荐

  1. 吴恩达-coursera-机器学习-week8

    十三.聚类(Clustering) 13.1 无监督学习:简介 13.2 K-均值算法 13.3 优化目标 13.4 随机初始化 13.5 选择聚类数 十四.降维(Dimensionality Red ...

  2. Lvs+Keepalived+Mysql

    环境 [root@node1 ~]# cat /etc/redhat-release CentOS Linux release (Core) [root@node1 ~]# uname -a Linu ...

  3. Linux学习笔记02—磁盘分区

    下面介绍四种最常见的分区方式: (1)    最简单的分区方案. SWAP分区:即交换分区,建议大小是物理内存的1-2倍. /分区:建议大小在6GB以上. 使用以上的分区方案,所有的数据都在/分区上, ...

  4. spring-boot 速成(9) druid+mybatis 多数据源及读写分离的处理

    按上节继续学习,稍微复杂的业务系统,一般会将数据库按业务拆开,比如产品系统的数据库放在product db中,订单系统的数据库放在order db中...,然后,如果量大了,可能每个库还要考虑做读.写 ...

  5. PHP项目收藏

    API接口管理系统 Github上的PHP资源汇总大全 Github.com上有哪些比较有趣的PHP项目 SOAP NuSOAP - SOAP Toolkit for PHP [官网] [教程] 通用 ...

  6. Win10正式版开机慢怎么办 开机黑屏时间长怎么办

    升级Win10正式版后开机速度慢.黑屏时间长怎么解决呢?其实我重要是由Win10正式版所提供的“快速启动”功能与电脑显卡驱动.电源管理驱动不兼容所造成的.下面就与大家分享一下针对Win10正式版开机速 ...

  7. Java异常---获取异常的堆栈信息

    Java 实例 - 获取异常的堆栈信息  Java 实例 以下实例演示了使用异常类的 printStack() 方法来获取堆栈信息: Main.java 文件 public class Main{ p ...

  8. EBS已安装模块

    /* Formatted on 2018/3/15 11:14:51 (QP5 v5.256.13226.35538) */ SELECT fa.application_short_name , fp ...

  9. React中的的JSX

    什么是JSX? JSX是JavaScript XML的缩写,其本质是js,表现形式类似于XML,与js区别在于可直接在里面编写html标签. 怎么使用JSX? 语法规则: JSX 的基本语法规则:HT ...

  10. 侏罗纪世界2百度云在线观看迅雷下载高清BT下载

    原名:Jurassic World: Fallen Kingdom 地区:美国 语言:英语 首播:2018-06-15(中国大陆) / 2018-06-22(美国) 电视台: 类型:动作 / 科幻 / ...