Majority Number

原题链接:http://lintcode.com/en/problem/majority-number/#

Given an array of integers, the majority number is the number that occurs more than half of the size of the array. Find it.

Example

For [1, 1, 1, 1, 2, 2, 2], return 1

Challenge

O(n) time and O(1) space

SOLUTION 1:

http://www.geeksforgeeks.org/majority-element/

这里是一篇论文: http://www.cs.utexas.edu/~moore/best-ideas/mjrty/

这里用的算法是:MJRTY - A Fast Majority Vote Algorithm

1. 简单来讲,就是不断对某个议案投票,如果有人有别的议案,则将前面认为的议案的cnt减1,减到0换一个议案。

如果存在majority number,那么这个议案一定不会被减到0,最后会胜出。

2. 投票完成后,要对majority number进行检查,以排除不存在majority number的情况。如 1,2,3,4这样的数列,是没有majory number的。

很简单,统计一下结果议案的票数,没有过半就是没有majority number.

摘录一段解释:

METHOD 3 (Using Moore’s Voting Algorithm)

This is a two step process.
1. Get an element occurring most of the time in the array. This phase
will make sure that if there is a majority element then it will return
that only.
2. Check if the element obtained from above step is majority element.

1. Finding a Candidate:
The algorithm for first phase that works in O(n) is known as Moore’s
Voting Algorithm. Basic idea of the algorithm is if we cancel out each
occurrence of an element e with all the other elements that are
different from e then e will exist till end if it is a majority element.

findCandidate(a[], size)
1. Initialize index and count of majority element
maj_index = 0, count = 1
2. Loop for i = 1 to size – 1
(a)If a[maj_index] == a[i]
count++
(b)Else
count--;
(c)If count == 0
maj_index = i;
count = 1
3. Return a[maj_index]

Above algorithm loops through each element and maintains a count of a[maj_index], If next element is same then increments the count, if next element is not same then decrements the count, and if the count reaches 0 then changes the maj_index to the current element and sets count to 1.
First Phase algorithm gives us a candidate element. In second phase we
need to check if the candidate is really a majority element. Second
phase is simple and can be easily done in O(n). We just need to check if
count of the candidate element is greater than n/2.

Example:
A[] = 2, 2, 3, 5, 2, 2, 6
Initialize:
maj_index = 0, count = 1 –> candidate ‘2?
2, 2, 3, 5, 2, 2, 6

Same as a[maj_index] => count = 2
2, 2, 3, 5, 2, 2, 6

Different from a[maj_index] => count = 1
2, 2, 3, 5, 2, 2, 6

Different from a[maj_index] => count = 0
Since count = 0, change candidate for majority element to 5 => maj_index = 3, count = 1
2, 2, 3, 5, 2, 2, 6

Different from a[maj_index] => count = 0
Since count = 0, change candidate for majority element to 2 => maj_index = 4
2, 2, 3, 5, 2, 2, 6

Same as a[maj_index] => count = 2
2, 2, 3, 5, 2, 2, 6

Different from a[maj_index] => count = 1

Finally candidate for majority element is 2.

First step uses Moore’s Voting Algorithm to get a candidate for majority element.

2. Check if the element obtained in step 1 is majority

printMajority (a[], size)
1. Find the candidate for majority
2. If candidate is majority. i.e., appears more than n/2 times.
Print the candidate
3. Else
Print "NONE"
 package Algorithms.lintcode.math;

 import java.util.ArrayList;

 public class MajorityNumber {
/**
* @param nums: a list of integers
* @return: find a majority number
*/
public int majorityNumber(ArrayList<Integer> nums) {
// write your code
if (nums == null || nums.size() == 0) {
// No majority number.
return -1;
} int candidate = nums.get(0); // The phase 1: Voting.
int cnt = 1;
for (int i = 1; i < nums.size(); i++) {
if (nums.get(i) == candidate) {
cnt++;
} else {
cnt--;
if (cnt == 0) {
candidate = nums.get(i);
cnt = 1;
}
}
} // The phase 2: Examing.
cnt = 0;
for (int i = 0; i < nums.size(); i++) {
if (nums.get(i) == candidate) {
cnt++;
}
} // No majory number.
if (cnt <= nums.size() / 2) {
return -1;
} return candidate;
}
}

2014.12.27 REDO:

 public int majorityElement(int[] num) {
if (num == null || num.length == 0) {
return -1;
} int maj = num[0]; int len = num.length;
int cnt = 1;
for (int i = 1; i < len; i++) {
if (cnt == 0) {
maj = num[i];
cnt = 1;
} else if (num[i] != maj) {
cnt--;
} else {
cnt++;
}
} return maj;
}

GITHUB:

https://github.com/yuzhangcmu/LeetCode_algorithm/blob/master/lintcode/math/MajorityNumber.java

Lintcode: Majority Number 解题报告的更多相关文章

  1. Lintcode: Majority Number III

    Given an array of integers and a number k, the majority number is the number that occurs more than 1 ...

  2. 【九度OJ】题目1040:Prime Number 解题报告

    [九度OJ]题目1040:Prime Number 解题报告 标签(空格分隔): 九度OJ 原题地址:http://ac.jobdu.com/problem.php?pid=1040 题目描述: Ou ...

  3. 【LeetCode】Largest Number 解题报告

    [LeetCode]Largest Number 解题报告 标签(空格分隔): LeetCode 题目地址:https://leetcode.com/problems/largest-number/# ...

  4. 【LeetCode】306. Additive Number 解题报告(Python)

    [LeetCode]306. Additive Number 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http: ...

  5. Lintcode: Majority Number II 解题报告

    Majority Number II 原题链接: http://lintcode.com/en/problem/majority-number-ii/# Given an array of integ ...

  6. [LintCode] Majority Number 求众数

    Given an array of integers, the majority number is the number that occurs more than half of the size ...

  7. Lintcode: Majority Number II

    Given an array of integers, the majority number is the number that occurs more than 1/3 of the size ...

  8. LintCode Majority Number II / III

    Given an array of integers, the majority number is the number that occurs more than 1/3 of the size ...

  9. [LintCode] Majority Number 求大多数

    Given an array of integers, the majority number is the number that occurs more than half of the size ...

随机推荐

  1. apache2.2 虚拟主机配置(转)

    转自:http://blog.csdn.net/zm2714/article/details/8351342 一.改动httpd.conf 打开appserv的安装文件夹,找到httpd.conf文件 ...

  2. 安装apr报错rm: cannot remove `libtoolT': No such file or directory

    直接打开/usr/local/src/apr-1.4.6/configure  把 $RM“$cfgfile” 那行删除掉 $RM“$cfgfile” 大约在 42302行 然后再重新运行  ./co ...

  3. Nginx+FastCGI运行原理(一)

    1 实战Nginx与PHP(FastCGI)的安装.配置与优化 1.1 什么是 FastCGI FastCGI是一个可伸缩地.高速地在HTTP server和动态脚本语言间通信的接口.多数流行的HTT ...

  4. Ubuntu终端命令行播放音乐(mp3)

    有很多在终端命令行播放mp3的工具,有的甚至可以生成播放列表.也只有命令行重度使用者有这个需求,下面我们来看一看这些工具. Sox Sox(Sound eXchange)是操作声音文件的瑞士军刀,它可 ...

  5. 环信集成 2---基于环信Demo3.0,实现单聊功能

    这几天在做环信,所以把环信相关的东西拿过来,做个系统点的东西 注意: 这里Demo集成的是带有实时语音功能的(libEaseMobClientSDK.a). 环信库是直接拖拽EaseMobSDK文件夹 ...

  6. 模拟器集成3DTouch-b

    本文主要讲解3DTouch各种场景下的集成,开发主屏幕应用icon上的快捷选项标签(Home Screen Quick Actions),静态设置 UIApplicationShortcutItem ...

  7. python packages prebuild for windows

    python  prebuild / precompiled packages for windows  by uci edu   在python windows环境下作业,有时候会碰上一些无厘头的问 ...

  8. IE6-IE9兼容性问题列表及解决办法:锁表头的JQuery方案和非JQuery方案(不支持IE6,7,8)

    鉴于从IE8开始,IE不再支持css的expression了,所以以前依靠它完成锁表头的代码就全部失效了,面对新的浏览器,一切又要重新来过了. 现在所能找到的对于锁表头的方案主要有两种路子:一种是使用 ...

  9. 近期对招聘Android开发者的一些思考

    公司要招聘Android开发者,故面试了大概十来个人.由于是小公司,所以来的人大多是90后,比較年轻.90后大概二十三四岁吧,从简历上看都写了一到两年的工作经验. 也由于是小公司,所以对工作经验这些没 ...

  10. Linux 命令 统计进程数目

    ps -efL | grep python | wc -l 此命令的意思是查看 Python的进程数目 ps -ef|grep python|grep -v grep|cut -c -|xargs k ...