BZOJ 2339 【HNOI2011】 卡农
题目链接:卡农
听说这道题是经典题?
首先明确一下题意(我在这里纠结了好久):有\(n\)个数,要求你选出\(m\)个不同的子集,使得每个数都出现了偶数次。无先后顺序。
这道题就是一道数学题。显然我们可以强制有先后顺序,只需要在最后除掉一个\(m!\)即可。令\(f_i\)表示选出\(i\)个子集的方案数,我们来考虑一下怎么算。
由于总的方案数很好计算,选出\(i\)个子集的方案就是\(A^{i-1}_{2^n-1}\),因为一旦选出了前\(i-1\)个,第\(i\)个就已经确定了。
我们这样选,可以保证每个数出现了偶数次,但是并不能够保证选出的不是空集以及集合不重复。所以我们来看看不合法的情况有多少。
第一种情况,如果前\(i-1\)个就是一个合法方案,那么第\(i\)个只能是空集。这种情况显然不合法,方案数是\(f_{i-1}\)。
第二种情况,第\(i\)个集合和之前任意一个冲突了就不行。由于另外还剩\(i-2\)个集合未确定,所以这部分方案数为\((i-1)f_{i-2}(2^n-1-(i-2))\)。第\(i\)个集合可选的方案数为\(2^n-1-(i-2)\),然后和另外\(i-2\)个一起排列一下还要乘上\(i-1\)。
所以这道题就做完了。
下面贴代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
#define maxn 1000010
#define mod 100000007 using namespace std;
typedef long long llg; int n,m,nci;
llg f[maxn],g[maxn],jie; llg mi(llg a,int b){
llg s=1;
while(b){
if(b&1) s=s*a%mod;
a=a*a%mod; b>>=1;
}
return s;
} int main(){
File("a");
scanf("%d %d",&n,&m);
nci=(mi(2,n)-1+mod)%mod; g[0]=jie=1;
for(int i=1;i<=m;i++) g[i]=g[i-1]*(nci-i+1)%mod;
for(int i=1;i<=m;i++) jie*=i,jie%=mod;
for(int i=3;i<=m;i++){
f[i]=g[i-1]-f[i-1];
f[i]-=(i-1)*f[i-2]%mod*(nci-i+2)%mod;
f[i]%=mod; if(f[i]<0) f[i]+=mod;
}
printf("%lld",f[m]*mi(jie,mod-2)%mod);
return 0;
}
BZOJ 2339 【HNOI2011】 卡农的更多相关文章
- bzoj 2339: [HNOI2011]卡农
Description Solution 比较难想.... 我们先考虑去掉无序的这个条件,改为有序,最后除 \(m!\) 即可 设 \(f[i]\) 表示前\(i\)个合法集合的方案数 明确一点: 如 ...
- BZOJ.2339.[HNOI2011]卡农(思路 DP 组合 容斥)
题目链接 \(Description\) 有\(n\)个数,用其中的某些数构成集合,求构造出\(m\)个互不相同且非空的集合(\(m\)个集合无序),并满足每个数总共出现的次数为偶数的方案数. \(S ...
- 2339: [HNOI2011]卡农
Description 首先去除顺序不同算一种的麻烦,就是最后答案除以总片段数\(2^m-1\) 设\(f_i\)表示安排\(i\)个片段的合法种类 那么对于任何一个包含\(i-1\)个片段的序列(除 ...
- bzoj2339[HNOI2011]卡农 dp+容斥
2339: [HNOI2011]卡农 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 842 Solved: 510[Submit][Status][ ...
- [BZOJ2339][HNOI2011]卡农
[BZOJ2339][HNOI2011]卡农 试题描述 输入 见"试题描述" 输出 见"试题描述" 输入示例 见"试题描述" 输出示例 见& ...
- BZOJ2339[HNOI2011]卡农——递推+组合数
题目链接: [HNOI2011]卡农 题目要求从$S=\{1,2,3……n\}$中选出$m$个子集满足以下三个条件: 1.不能选空集 2.不能选相同的两个子集 3.每种元素出现次数必须为偶数次 我们考 ...
- P3214 [HNOI2011]卡农
题目 P3214 [HNOI2011]卡农 在被一题容斥\(dp\)完虐之后,打算做一做集合容斥这类的题了 第一次深感HNOI的毒瘤(题做得太少了!!) 做法 求\([1,n]\)组成的集合中选\(m ...
- 【BZOJ2339】[HNOI2011]卡农 组合数+容斥
[BZOJ2339][HNOI2011]卡农 题解:虽然集合具有无序性,但是为了方便,我们先考虑有序的情况,最后将答案除以m!即可. 考虑DP.如果我们已经知道了前m-1个集合,那么第m个集合已经是确 ...
- [HNOI2011]卡农
题目描述 众所周知卡农是一种复调音乐的写作技法,小余在听卡农音乐时灵感大发,发明了一种新的音乐谱写规则.他将声音分成 n 个音阶,并将音乐分成若干个片段.音乐的每个片段都是由 1 到 n 个音阶构成的 ...
- [HNOI2011]卡农 题解
题目描述 众所周知卡农是一种复调音乐的写作技法,小余在听卡农音乐时灵感大发,发明了一种新的音乐谱写规则.他将声音分成 n 个音阶,并将音乐分成若干个片段.音乐的每个片段都是由 1 到 n 个音阶构成的 ...
随机推荐
- 万恶之源 - Python初识函数
什么是函数 我们目前为止,已经可以完成一些软件的基本功能了,那么我们来完成这样一个功能:约x pint("拿出手机") print("打开陌陌") print( ...
- LeetCode--53 最大连续子序列(总结)
# 给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和. # 示例:# 输入: [-2,1,-3,4,-1,2,1,-5,4],# 输出: 6# 解释 ...
- discuz $_G变量
class.core.php中 global $_G; $_G = array( 'uid' => 0, 'username' => ...
- BufferedImage操作图片笔记(转)
BufferedImage是Image的一个子类,BufferedImage生成的图片在内存里有一个图像缓冲区,利用这个缓冲区我们可以很方便的操作这个图片,通常用来做图片修改操作如大小变换.图片变灰. ...
- VueJS 数据驱动和依赖追踪分析
之前关于 Vue 数据绑定原理的一点分析,最近需要回顾,就顺便发到随笔上了 在之前实现一个自己的Mvvm中,用 setter 来观测model,将界面上所有的 viewModel 绑定到 model ...
- font-awesome图标
- zw版【转发·台湾nvp系列Delphi例程】HALCON Roberts1
zw版[转发·台湾nvp系列Delphi例程]HALCON Roberts1 procedure TForm1.Button1Click(Sender: TObject);var img, img1: ...
- Object-C-Foundation-NSNuber
NSNumber 是一个数值类型封装起来的数值. 装箱:基础类型->对象类型 NSNumber *number=[NSNumber numberWithInt:12]; 拆箱:对象类型-> ...
- NOSQL学习之一:Memcached, Redis, MongoDB区别
Redis是一个开源(BSD许可),内存存储的数据结构服务器,可用作数据库,高速缓存和消息队列代理. Memcached是一个自由开源的,高性能,分布式内存对象缓存系统. MongoDB是一个基于分布 ...
- 本地缓存之GUAVA
项目开发中,很多配置数据需要缓存,一般来说,开发人员都会手动写HashMap,HashSet或者ConcurrentHashMap,ConcurrentHashSet缓存数据,但是这样的缓存往往存在内 ...