正解:数论/一个神仙想法

解题报告:

先放传送门qwq

两种方法,都还挺妙的就都写了qwq

第一种是快速幂

把b用二进制表示成,ck*2k+ck-1*2k-1+...+c0*20

然后就可以表示成,a*(ck*2k+ck-1*2k-1+...+c0*20)%p

然后就可以用快速幂的思想做掉,能理解趴?

哦其实也可以用秦九韶理解,差不多,反正都这个意思就是了qwq

#include<bits/stdc++.h>
using namespace std;
#define rp(i,x,y) for(register ll i=x;i<=y;++i)
#define ll unsigned long long

ll a,b,p;

inline ll read()
{
    ;;
    '))ch=getchar();
    ;
    )+(x<<)+(ch^'),ch=getchar();
    return y?x:-x;
}
inline ll js(ll x,ll y,ll mod)
{
    ll ans=;
    while(x)
    {
        )ans+=y,ans%=mod;
        x>>=;y<<=;y%=mod;
    }
    return ans;
}

int main()
{
    a=read(),b=read(),p=read();
    printf("%lld\n",js(a,b,p));
    ;
}

第二种是一个,神仙想法

首先很容易能理解就是 a*b%p=a*b-⌊a*b/p⌋*p

然后就可以分成俩部分计算,一个是a*b直接算一个是⌊a*b/p⌋*p

首先理解一个东西,就是因为%p所以答案一定是小于等于p的,那么溢出导致舍弃掉了的部分就没有关系反正本来就是太大了要被废掉的

然后另一个就是⌊a*b/p⌋*p,我们可以先开个double算出⌊a*b/p⌋,考虑精度不够怎么办?没有关系因为double有效数字就是18-19的样子(,,,就是这么巧,被出题人安排得明明白白×)所以舍弃掉的部分刚好就是我们不需要的部分

然后就欧克了

是不是很妙!!!

(然后我开始做的时候还WA了一下,,,解释下发生了什么qwq就是,a和b是要%p的然后我忘了,,,所以就WA了,估计是溢出之类的问题?虽然我本机是A的?真实哭泣QAQ

#include<bits/stdc++.h>
using namespace std;
#define rp(i,x,y) for(register ll i=x;i<=y;++i)
#define ll unsigned long long

ll a,b,p,cjk;
double goldgenius;

inline ll read()
{
    ;;
    '))ch=getchar();
    ;
    )+(x<<)+(ch^'),ch=getchar();
    return y?x:-x;
}

int main()
{
    a=read(),b=read(),p=read();
    cjk=a*b;goldgenius=(double)a*b/p;
    cjk=cjk-(ll)goldgenius*p;cjk%=p;)cjk+=p;
    printf("%lld\n",cjk);
    ;
}

umm然后留下一个傻逼问题(,,,其实开始困扰了我半天来着×),这样的

为什么不可以直接算a*b%p呢?

这是因为!可能你舍掉了高位之后膜p会有问题!能懂趴?然后用法二就可以巧妙避免这个问题!

好那这题就解决辣!

CH0102 64位整数乘法 数论的更多相关文章

  1. CH0101 a^b、 CH0102 64位整数乘法(快速幂、快速乘)【模板题】

    题目链接:传送门    //a^b   传送门    //64位整数乘法 题目: 描述 求 a 的 b 次方对 p 取模的值,其中 ≤a,b,p≤^ 输入格式 三个用空格隔开的整数a,b和p. 输出格 ...

  2. CH0101 a^b & CH0102 64位整数乘法

    大数取模的两道题. 虐狗宝典学习笔记: 两个数值执行算术运算时,以参与运算的最高数值类型为基准,与保存结果的变量类型无关.两个32位整数的成绩可能超过int类型的表示范围,但是CPU只会用一个32位寄 ...

  3. CH 0101 - a^b / CH 0102 - 64位整数乘法 - [快速幂和快速乘]

    0101 a^b 题目链接:传送门 描述 求 a 的 b 次方对 p 取模的值,其中 1≤a,b,p≤10^9 输入格式 三个用空格隔开的整数 a,b 和 p. 输出格式 一个整数,表示 a^b mo ...

  4. AcWing 90. 64位整数乘法

    求a*b%p的值. 0<a,b,p<1e18; 原题链接 #include<bits/stdc++.h> #define ull unsigned long long usin ...

  5. C++的64位整数

    在做ACM题时,经常都会遇到一些比较大的整数.而常用的内置整数类型常常显得太小了:其中long 和 int 范围是[-2^31,2^31),即-2147483648~2147483647.而unsig ...

  6. C/C++中的64位整数

    C/C++中的64位整数(__int64 and long long) 在做ACM题时,经常都会遇到一些比较大的整数.而常用的内置整数类型常常显得太小了:其中long 和 int 范围是[-2^31, ...

  7. windows 64位整数

    #include <iostream> #include <ctime> using namespace std; int main() { cout << cou ...

  8. printf如何输出64位整数

    From: http://blog.csdn.net/zzqhost/article/details/6064886 关于printf函数输出64位数的问题,其实在window下和linux下是不一样 ...

  9. C对64位整数类型的支持

    在使用C语言过程中可能需要接触长整数类型,其中包括固定长度数据类型的声明.输入输出函数的标志符等细节,在此记录. int64_t 与 uint64_t C的标准只规定特定数据类型需要实现的最小长度,特 ...

随机推荐

  1. postgresql 指令

    (1)用户实用程序: createdb 创建一个新的PostgreSQL的数据库(和SQL语句:CREATE DATABASE 相同) createuser 创建一个新的PostgreSQL的用户(和 ...

  2. Google TensorFlow 机器学习框架介绍和使用

    TensorFlow是什么? TensorFlow是Google开源的第二代用于数字计算(numerical computation)的软件库.它是基于数据流图的处理框架,图中的节点表示数学运算(ma ...

  3. 手机CPU天梯图2018年5月最新版

    话不多说,以下是2018年5月最新的手机CPU天梯图精简版,由于最近一两个月,芯片厂商发布的新Soc并不不多,因此这次天梯图更新,主要是来看看今年主流手机厂商都流行使用哪些处理器. 手机CPU天梯图2 ...

  4. php curl那点事儿

    curl是最常用功能之一初始化句柄 $ch = curl_init(); post 传$data 1. 如果$data是字符串,则Content-Type是application/x-www-form ...

  5. java虚拟机性能监控调优及原则

    摘抄 http://uule.iteye.com/blog/2114697 一.JVM内存模型及垃圾收集算法  1.根据Java虚拟机规范,JVM将内存划分为: New(年轻代) Tenured(年老 ...

  6. 用js写留言信息的判断非空条件

    首先在tp上有多种方法去判断留言是否为空,但是js是最方便也是最没有冲突的. <form action="{:U('validate')}" method="pos ...

  7. thinkphp5.0 实现图片验证效果且能点击图片刷新图片

    思路与文件上传相同,只是验证码一个方法: <img src="{:captcha_src()}" /> 后台文件:app\ceshi\yam <?php name ...

  8. <转>机器学习系列(9)_机器学习算法一览(附Python和R代码)

    转自http://blog.csdn.net/han_xiaoyang/article/details/51191386 – 谷歌的无人车和机器人得到了很多关注,但我们真正的未来却在于能够使电脑变得更 ...

  9. ubuntu14.04_install_gitlab_platform

    /** author: lihaibo URL:http://www.cnblogs.com/horizonli/p/5321770.html */ 下面是干货 [第一部分 安装] 环境:ubuntu ...

  10. csdn博客刷点击率(java代码)

    此文为转载,亲测有效. import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; impo ...