若H的断点为k,即k个数据点不能被H给shatter,那么k+1个数据点也不能被H给shatter,即k+1也是H的断点。
如果给定的样本数N是大于等于k的,易得mH(N)<2N,且随着N的增大,小得越来越多。
当断点为k时,记最大可能的成长函数mH(N)为bound函数,记为B(N,k)。------只和N、k有关。
注意比较,发现bound函数比起成长函数消除了H。
如果无断点,自然没有B(N,k)什么事;
如果断点为k,
那么mH(N)是给定H下,可能的最大假设类数;
B(N,k)是不限H下,可能的最大假设类数。
B(N,k)=maxH mH(N),只和样本数N和断点k有关。
注意:这里的H要求有相同的k。
通过数学归纳法可证得:B(N,k)实际被Nk-1所框住,既然成长函数的上限被N的多项式给框住,易得,如果断点存在的话,成长函数也是多项式型的。
------证明了上一节的猜想。
再看保证Ein和Eout的不等式,
证明,
1.用和训练集同样大小的测试集上的表现替代整体输入空间上的表现,认为使得训练集内和整体表现差异过大的坏数据也会使得训练集和测试集上的表现差异过大;
这里做了2件事:
一是用有限的训练集+有限的测试集替代了无限的输入空间,将无限的X变为数量为2N的有限数据集;
二是用完美划分该有限数据集的模式f'代替了完美划分整个输入空间的模式f。------进行了松弛,因为f'的数量多于f。
2.用有限类数mH(2N)替代无限|H|;
3.使用不放回的霍夫丁不等式。
对应于在取小球实验里不放回地抽取,取出的橘色小球频率和罐子里剩余的橘色小球概率依旧概率近似相等。------因为 the inequalities also hold when the Xi have been obtained using sampling without replacement; in this case the random variables are not independent anymore.(来自维基百科)
得到VC bound。
所以,
2维感知器算法在训练集D上学习到的g泛化到整个输入空间X上是概率近似可行的。
那3维及以上感知器算法呢?

机器学习基石笔记:06 Theory of Generalization的更多相关文章

  1. 机器学习基石:06 Theory of Generalization

    若H的断点为k,即k个数据点不能被H给shatter,那么k+1个数据点也不能被H给shatter,即k+1也是H的断点. 如果给定的样本数N是大于等于k的,易得mH(N)<2N,且随着N的增大 ...

  2. Coursera台大机器学习课程笔记5 -- Theory of Generalization

    本章思路: 根据之前的总结,如果M很大,那么无论假设泛化能力差的概率多小,都无法忽略,所以问题转化为证明M不大,然后上章将其转化为证明成长函数:mh(N)为多项式级别.直接证明似乎很困难,本章继续利用 ...

  3. 机器学习基石笔记:01 The Learning Problem

    原文地址:https://www.jianshu.com/p/bd7cb6c78e5e 什么时候适合用机器学习算法? 存在某种规则/模式,能够使性能提升,比如准确率: 这种规则难以程序化定义,人难以给 ...

  4. 机器学习基石笔记:04 Feasibility of Learning

    原文地址:https://www.jianshu.com/p/f2f4d509060e 机器学习是设计算法\(A\),在假设集合\(H\)里,根据给定数据集\(D\),选出与实际模式\(f\)最为相近 ...

  5. 林轩田机器学习基石笔记4—Feasibility of Learning

    上节课介绍了机器学习可以分为不同的类型.其中,监督式学习中的二元分类和回归分析是最常见的也是最重要的机器学习问题.本节课,我们将介绍机器学习的可行性,讨论问题是否可以使用机器学习来解决. 一.Lear ...

  6. 林轩田机器学习基石笔记3—Types of Learning

    上节课我们主要介绍了解决线性分类问题的一个简单的方法:PLA.PLA能够在平面中选择一条直线将样本数据完全正确分类.而对于线性不可分的情况,可以使用Pocket Algorithm来处理.本节课将主要 ...

  7. 林轩田机器学习基石笔记2—Learning to Answer Yes/No

    机器学习的整个过程:根据模型H,使用演算法A,在训练样本D上进行训练,得到最好的h,其对应的g就是我们最后需要的机器学习的模型函数,一般g接近于目标函数f.本节课将继续深入探讨机器学习问题,介绍感知机 ...

  8. 林轩田机器学习基石笔记1—The Learning Problem

    机器学习分为四步: When Can Machine Learn? Why Can Machine Learn? How Can Machine Learn? How Can Machine Lear ...

  9. 06 Theory of Generalization

    若H的断点为k,即k个数据点不能被H给shatter,那么k+1个数据点也不能被H给shatter,即k+1也是H的断点. 如果给定的样本数N是大于等于k的,易得mH(N)<2N,且随着N的增大 ...

随机推荐

  1. linux 下将tomcat注册成服务并开机启动

    一.将startup.sh和shutdown.sh新建软连接到/usr/bin ln -s /usr/local/apache-tomcat-8.5.38/bin/startup.sh /usr/bi ...

  2. Java学习笔记(十六):this关键字

  3. python--第十一天总结(paramiko 及数据库操作)

    堡垒机前戏 开发堡垒机之前,先来学习Python的paramiko模块,该模块机遇SSH用于连接远程服务器并执行相关操作 实现思路 堡垒机执行流程: 管理员为用户在服务器上创建账号(将公钥放置服务器, ...

  4. DRF中的序列化器

    DRF中的序列化器详细应用   视图的功能:说白了就是接收前端请求,进行数据处理 (这里的处理包括:如果前端是GET请求,则构造查询集,将结果返回,这个过程为序列化:如果前端是POST请求,假如要对数 ...

  5. jsp中<c:if>标签的用法

    <c:if test="${(tbl.column1 eq '值') and (tbl.column2 eq 'str')}"> <table>...< ...

  6. 设计原则之依赖倒置js

    依赖倒置 定义:高层模块不应该依赖低层模块,二者都应该依赖其抽象:抽象不应该依赖细节:细节应该依赖抽象.(百科全书) 这个定义什么意思,太专业 感觉不像人话.. 什么叫高层模块,什么叫底层模块,什么叫 ...

  7. ORACLE多表关联UPDATE 语句[z]

    [z]https://www.cnblogs.com/franson-2016/p/5988303.html 1) 最简单的形式 SQL 代码 --经确认customers表中所有customer_i ...

  8. Sonar+maven+jenkins集成,Java代码走查

    Sonar服务在Sonar安装与使用篇已经介绍过,此文章不再说了 Jenkins的安装与配置方法参考http://www.cnblogs.com/chenchen-tester/p/6408815.h ...

  9. Golang: 数组和切片

    数组 同其他语言一样,数组是一些相同类型的元素的集合.数组声明 数组的类型为 n[T],其中 n 表示数组中元素的个数,T 表示数组中元素的类型.数组元素的个数 n 也是数组类型的一部分 packag ...

  10. SpringBoot编写自定义Starter

    根据SpringBoot的Starter编写规则,需要编写xxxStarter依赖xxxAutoConfigurer,xxxStarter是一个空的jar,仅提供辅助性的依赖管理,引入其他类库 1.建 ...