跑出可行流后从原来的汇点向原来的源点跑最大流,原图最小流=inf-maxflow。显然超源超汇的相关边对其也没有影响。原图最小流=可行流-原图新增流量,因为t向s流量增加相当于s向t流量减少。但为什么等于inf-maxflow呢?显然最大流会把这条inf边跑满,这样会增加inf-可行流的流量,然后又继续在原图中增加可增加的流量,移项就可以得到这个式子了。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 50010
#define M 500000
#define S 0
#define T 50001
#define inf 1000000000
int n,m,w,v,t=-,p[N],degree[N],l[M],tot=;
int cur[N],d[N],q[N],ans=;
struct data{int to,nxt,cap,flow;
}edge[M];
void addedge(int x,int y,int z)
{
t++;edge[t].to=y,edge[t].nxt=p[x],edge[t].cap=z,edge[t].flow=,p[x]=t;
t++;edge[t].to=x,edge[t].nxt=p[y],edge[t].cap=,edge[t].flow=,p[y]=t;
}
bool bfs(int s,int t)
{
memset(d,,sizeof(d));d[s]=;
int head=,tail=;q[]=s;
do
{
int x=q[++head];
for (int i=p[x];~i;i=edge[i].nxt)
if (d[edge[i].to]==-&&edge[i].flow<edge[i].cap)
{
d[edge[i].to]=d[x]+;
q[++tail]=edge[i].to;
}
}while (head<tail);
return ~d[t];
}
int work(int k,int f,int t)
{
if (k==t) return f;
int used=;
for (int i=cur[k];~i;i=edge[i].nxt)
if (d[k]+==d[edge[i].to])
{
int w=work(edge[i].to,min(f-used,edge[i].cap-edge[i].flow),t);
edge[i].flow+=w,edge[i^].flow-=w;
if (edge[i].flow<edge[i].cap) cur[k]=i;
used+=w;if (used==f) return f;
}
if (used==) d[k]=-;
return used;
}
void dinic(int s,int t)
{
while (bfs(s,t))
{
memcpy(cur,p,sizeof(p));
ans+=work(s,inf,t);
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("loj117.in","r",stdin);
freopen("loj117.out","w",stdout);
const char LL[]="%I64d";
#else
const char LL[]="%lld";
#endif
n=read(),m=read(),w=read(),v=read();
memset(p,,sizeof(p));
for (int i=;i<=m;i++)
{
int x=read(),y=read(),low=read(),high=read();
addedge(x,y,high-low);
degree[y]+=low,degree[x]-=low;
l[i]=low;
}
for (int i=;i<=n;i++)
if (degree[i]>) addedge(S,i,degree[i]),tot+=degree[i];
else if (degree[i]<) addedge(i,T,-degree[i]);
addedge(v,w,inf);
dinic(S,T);
if (ans<tot) cout<<"please go home to sleep";
else ans=,dinic(v,w),cout<<inf-ans;
return ;
}

LOJ117 有源汇有上下界最小流(上下界网络流)的更多相关文章

  1. 【Loj117】有源汇上下界最小流(网络流)

    [Loj117]有源汇上下界最小流(网络流) 题面 Loj 题解 还是模板题. #include<iostream> #include<cstdio> #include< ...

  2. BZOJ_2502_清理雪道_有源汇上下界最小流

    BZOJ_2502_清理雪道_有源汇上下界最小流 Description        滑雪场坐落在FJ省西北部的若干座山上. 从空中鸟瞰,滑雪场可以看作一个有向无环图,每条弧代表一个斜坡(即雪道), ...

  3. SGU 176 Flow construction (有源有汇有上下界最小流)

    题意:给定 n 个点,m 条有向边,如果有向边的标号是1的话,就表示该边的上界下界都为容量 ,如果有向边的标号为0的哈,表示该边的下界为0,上界为容量 ,现在问,从 1 到 n 的最小流是多少,并输出 ...

  4. loj #117. 有源汇有上下界最小流

    题目链接 有源汇有上下界最小流,->上下界网络流 注意细节,边数组也要算上后加到SS,TT边. #include<cstdio> #include<algorithm> ...

  5. LOJ.117.[模板]有源汇有上下界最小流(Dinic)

    题目链接 有源汇有上下界最小流 Sol1. 首先和无源汇网络流一样建图,求SS->TT最大流: 然后连边(T->S,[0,INF]),再求一遍SS->TT最大流,答案为新添加边的流量 ...

  6. HDU 3157 Crazy Circuits (有源汇上下界最小流)

    题意:一个电路板,上面有N个接线柱(标号1~N)   还有两个电源接线柱  +  - 然后是 给出M个部件正负极的接线柱和最小电流,求一个可以让所有部件正常工作的总电流. 析:这是一个有源汇有上下界的 ...

  7. hdu3157有源汇上下界最小流

    题意:有源汇上下界最小流裸题,主要就是输入要用字符串的问题 #include<bits/stdc++.h> #define fi first #define se second #defi ...

  8. BZOJ 2502 清理雪道(有源汇上下界最小流)

    题面 滑雪场坐落在FJ省西北部的若干座山上. 从空中鸟瞰,滑雪场可以看作一个有向无环图,每条弧代表一个斜坡(即雪道),弧的方向代表斜坡下降的方向. 你的团队负责每周定时清理雪道.你们拥有一架直升飞机, ...

  9. BZOJ 2502 清理雪道/ Luogu P4843 清理雪道 (有源汇上下界最小流)

    题意 有一个有向无环图,求最少的路径条数覆盖所有的边 分析 有源汇上下界最小流板题,直接放代码了,不会的看dalao博客:liu_runda 有点长,讲的很好,静心看一定能看懂 CODE #inclu ...

  10. sgu 176 Flow construction(有源汇的上下界最小流)

    [题目链接] http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=11025 [模型] 有源汇点的上下界最小流.即既满足上下界又满足 ...

随机推荐

  1. jmeter(五)JDBC Request

    jmeter中取样器(Sampler)是与服务器进行交互的单元.一个取样器通常进行三部分的工作:向服务器发送请求,记录服务器的响应数据和记录响应时间信息 有时候工作中我们需要对数据库发起请求或者对数据 ...

  2. 9-51单片机ESP8266学习-AT指令(单片机采集温湿度数据通过8266发送给AndroidTCP客户端显示)

    http://www.cnblogs.com/yangfengwu/p/8798512.html 补充:今天答应了一个朋友写一下如果单片机发过的是字符串应该怎么解析,答应了今天写,哦哦哦是明天了,闲话 ...

  3. linux应用编程之进程间同步

    一.描述 在操作系统中,异步并发执行环境下的一组进程,因为相互制约关系,进而互相发送消息.互相合作.互相等待,使得各进程按一定的顺序和速度执行,称为进程间的同步.具有同步关系的一组并发进程,称为合作进 ...

  4. 51nod 1295 XOR key 可持久化01字典树

    题意 给出一个长度为\(n\)的正整数数组\(a\),再给出\(q\)个询问,每次询问给出3个数,\(L,R,X(L<=R)\).求\(a[L]\)至\(a[R]\)这\(R-L+1\)个数中, ...

  5. Ionic 中控件点击延迟的处理

    原文发表于我的技术博客 本文分享了在 Ionic 中如何处理控件点击延迟的问题. 原文发表于我的技术博客 1. 问题描述 在 Ionic 中,当在 iOS 环境下运行元素的点击事件时,你会发现点击响应 ...

  6. 【URLOS开发入门】docker官方系统镜像——Alpine入门教程

    我们在进行URLOS应用开发时,经常会用到一些基础系统镜像,如:ubuntu.CentOS.Debian等,我们可以通过docker pull命令直接拉取官方镜像. root@ubuntu:~# do ...

  7. Linux下开源邮件系统Postfix+Extmail+Extman环境部署记录

    一.基础知识梳理MUA (Mail User Agent) MUA 既是"邮件使用者代理人",因为除非你可以直接利用类似 telnet 之类的软件登入邮件主机来主动发出信件,否则您 ...

  8. LB层到Real Server之间访问请求的响应时间及HTTP状态码监控及报警设置

    为了监控到各业务的访问质量,基于LB层的Nginx日志,实现LB层到Real Server之间访问请求的响应时间(即upstream_response_time)及HTTP状态码(即upstream_ ...

  9. 回顾:前端模块化和AMD、CMD规范(全)

    先列举下一些著名言论: "我想定义一个 each 方法遍历对象,但页头的 util.js 里已经定义了一个,我的只能叫 eachObject 了,好无奈." "Requi ...

  10. Linux内核分析 笔记八 进程的切换和系统的一般执行过程 ——by王玥

    一.进程切换的关键代码switch_to的分析 (一)进程调度与进程调度的时机分析 1.不同类型的进程有不同的调度需求 第一种分类: I/O-bound:频繁地进行I/O,花费很多的时间等待I/O操作 ...