跑出可行流后从原来的汇点向原来的源点跑最大流,原图最小流=inf-maxflow。显然超源超汇的相关边对其也没有影响。原图最小流=可行流-原图新增流量,因为t向s流量增加相当于s向t流量减少。但为什么等于inf-maxflow呢?显然最大流会把这条inf边跑满,这样会增加inf-可行流的流量,然后又继续在原图中增加可增加的流量,移项就可以得到这个式子了。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 50010
#define M 500000
#define S 0
#define T 50001
#define inf 1000000000
int n,m,w,v,t=-,p[N],degree[N],l[M],tot=;
int cur[N],d[N],q[N],ans=;
struct data{int to,nxt,cap,flow;
}edge[M];
void addedge(int x,int y,int z)
{
t++;edge[t].to=y,edge[t].nxt=p[x],edge[t].cap=z,edge[t].flow=,p[x]=t;
t++;edge[t].to=x,edge[t].nxt=p[y],edge[t].cap=,edge[t].flow=,p[y]=t;
}
bool bfs(int s,int t)
{
memset(d,,sizeof(d));d[s]=;
int head=,tail=;q[]=s;
do
{
int x=q[++head];
for (int i=p[x];~i;i=edge[i].nxt)
if (d[edge[i].to]==-&&edge[i].flow<edge[i].cap)
{
d[edge[i].to]=d[x]+;
q[++tail]=edge[i].to;
}
}while (head<tail);
return ~d[t];
}
int work(int k,int f,int t)
{
if (k==t) return f;
int used=;
for (int i=cur[k];~i;i=edge[i].nxt)
if (d[k]+==d[edge[i].to])
{
int w=work(edge[i].to,min(f-used,edge[i].cap-edge[i].flow),t);
edge[i].flow+=w,edge[i^].flow-=w;
if (edge[i].flow<edge[i].cap) cur[k]=i;
used+=w;if (used==f) return f;
}
if (used==) d[k]=-;
return used;
}
void dinic(int s,int t)
{
while (bfs(s,t))
{
memcpy(cur,p,sizeof(p));
ans+=work(s,inf,t);
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("loj117.in","r",stdin);
freopen("loj117.out","w",stdout);
const char LL[]="%I64d";
#else
const char LL[]="%lld";
#endif
n=read(),m=read(),w=read(),v=read();
memset(p,,sizeof(p));
for (int i=;i<=m;i++)
{
int x=read(),y=read(),low=read(),high=read();
addedge(x,y,high-low);
degree[y]+=low,degree[x]-=low;
l[i]=low;
}
for (int i=;i<=n;i++)
if (degree[i]>) addedge(S,i,degree[i]),tot+=degree[i];
else if (degree[i]<) addedge(i,T,-degree[i]);
addedge(v,w,inf);
dinic(S,T);
if (ans<tot) cout<<"please go home to sleep";
else ans=,dinic(v,w),cout<<inf-ans;
return ;
}

LOJ117 有源汇有上下界最小流(上下界网络流)的更多相关文章

  1. 【Loj117】有源汇上下界最小流(网络流)

    [Loj117]有源汇上下界最小流(网络流) 题面 Loj 题解 还是模板题. #include<iostream> #include<cstdio> #include< ...

  2. BZOJ_2502_清理雪道_有源汇上下界最小流

    BZOJ_2502_清理雪道_有源汇上下界最小流 Description        滑雪场坐落在FJ省西北部的若干座山上. 从空中鸟瞰,滑雪场可以看作一个有向无环图,每条弧代表一个斜坡(即雪道), ...

  3. SGU 176 Flow construction (有源有汇有上下界最小流)

    题意:给定 n 个点,m 条有向边,如果有向边的标号是1的话,就表示该边的上界下界都为容量 ,如果有向边的标号为0的哈,表示该边的下界为0,上界为容量 ,现在问,从 1 到 n 的最小流是多少,并输出 ...

  4. loj #117. 有源汇有上下界最小流

    题目链接 有源汇有上下界最小流,->上下界网络流 注意细节,边数组也要算上后加到SS,TT边. #include<cstdio> #include<algorithm> ...

  5. LOJ.117.[模板]有源汇有上下界最小流(Dinic)

    题目链接 有源汇有上下界最小流 Sol1. 首先和无源汇网络流一样建图,求SS->TT最大流: 然后连边(T->S,[0,INF]),再求一遍SS->TT最大流,答案为新添加边的流量 ...

  6. HDU 3157 Crazy Circuits (有源汇上下界最小流)

    题意:一个电路板,上面有N个接线柱(标号1~N)   还有两个电源接线柱  +  - 然后是 给出M个部件正负极的接线柱和最小电流,求一个可以让所有部件正常工作的总电流. 析:这是一个有源汇有上下界的 ...

  7. hdu3157有源汇上下界最小流

    题意:有源汇上下界最小流裸题,主要就是输入要用字符串的问题 #include<bits/stdc++.h> #define fi first #define se second #defi ...

  8. BZOJ 2502 清理雪道(有源汇上下界最小流)

    题面 滑雪场坐落在FJ省西北部的若干座山上. 从空中鸟瞰,滑雪场可以看作一个有向无环图,每条弧代表一个斜坡(即雪道),弧的方向代表斜坡下降的方向. 你的团队负责每周定时清理雪道.你们拥有一架直升飞机, ...

  9. BZOJ 2502 清理雪道/ Luogu P4843 清理雪道 (有源汇上下界最小流)

    题意 有一个有向无环图,求最少的路径条数覆盖所有的边 分析 有源汇上下界最小流板题,直接放代码了,不会的看dalao博客:liu_runda 有点长,讲的很好,静心看一定能看懂 CODE #inclu ...

  10. sgu 176 Flow construction(有源汇的上下界最小流)

    [题目链接] http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=11025 [模型] 有源汇点的上下界最小流.即既满足上下界又满足 ...

随机推荐

  1. C语言程序设计II—第六周教学

    第六周教学总结(1/4-7/4) 教学内容 本周的教学内容为:第八章 指针 8.1 密码开锁(知识点:指针和指针变量的概念),8.2 角色互换(知识点:指针作为函数的参数返回多个值) 重点.难点:指针 ...

  2. I2S音频总线学习

    IIS音频总线学习(一)数字音频技术 一.声音的基本概念 声音是通过一定介质传播的连续的波. 图1 声波 重要指标: 振幅:音量的大小 周期:重复出现的时间间隔 频率:指信号每秒钟变化的次数 声音按频 ...

  3. c#中的多线程异常 (转载)

    1.对于Thread操作的异常处理 public static void Main() { try { Thread th = new Thread(DoWork); th.Start(); } ca ...

  4. FlashWindowEx实现窗口在任务栏闪烁/变化颜色

    原文:FlashWindowEx实现窗口在任务栏闪烁/变化颜色 效果类似QQ收到新的会话消息任务栏颜色变化 附2小段代码: [System.Runtime.InteropServices.DllImp ...

  5. 线上分享-- 基于DDD的.NET开发框架-ABP介绍

    前言 为了能够帮助.Net开发者开拓视野,更好的把最新的技术应用到工作中,我在3月底受邀到如鹏网.net训练营直播间为各位学弟学妹们进行ABP框架的直播分享.同时为了让更多的.NET开发者了解ABP框 ...

  6. NFS共享文件系统部署

    1. 概述 本篇博客主要是介绍如何安装和使用NFS服务. 2. 安装软件包 首先确认系统是否已经安装相应的软件包,执行命:rpm -qa | egrep "rpcbind|nfs-utils ...

  7. Oracle_忘记密码

    1.运行到C盘根目录 2.输入:SET ORACLE_SID = 你的SID名称 3.输入:sqlplus/nolog 4.输入:connect/as sysdba 5.输入:altre user s ...

  8. MariaDB 安装与启动 过程记录

    1. 安装之前的准备工作 rpm -qa |grep mysql rpm -qa |grep mariadb 按照查出来的软件包使用  yum remove  全部卸载,当然也可以 yum remov ...

  9. list 的 增 删

    增: 1. name = [] 2. name.append() 3. name.extend(name2) name2为可迭代的 name + name2 与之效果一样,合并为一个列表 4. nam ...

  10. Docker环境编译时的错误记录

    1)报错一docker-compose -f compose/app.yaml -f compose/backend.yaml -f compose/proxy.yaml build peatio b ...