看一个数是否为质数,我们通常会用那个O(√N)的算法来做,那个算法叫试除法。然而当这个数非常大的时候,这个高增长率的时间复杂度就不够这个数跑了。

  为了解决这个问题,我们先来看看费马小定理:若n为素数,a与n互质,则an-1Ξ1(mod n)。于是有人想过把它倒过来判断n是否为素数。首先,若a与n不互质,那么n为合数。所以只需要满足an-1Ξ1(mod n)即可,这个a干脆就让它等于2了。即判断2n-1Ξ1(mod n)是否成立。若不成立,那么n必定为合数。但成立时n就是素数吗?又有人找出了个数:2340Ξ1(mod 341),但是发现341是合数(11*31)。那我们能不能直接把a换成另一个数呢?答案是否定的。因为对于所有a,都存在an-1Ξ1(mod n),其中n为合数。于是这个方法就出错了。但是紧接着Miller Rabin测试对这个方法进行了改进。

  Miller Rabin的依据是,当n为素数时,x2Ξ1(mod n)的根有两个:x=1和x=n-1。这个根叫做平凡平方根(真的拗口)。因此,如果对于模n存在1的非平凡平方根,则n是个合数。

  那么Miller Rabin怎么改进的呢?

    ①选取多个基数a;

    ②寻找模n为1的非平凡平方根:令2t*u=n-1(t>=1,u为奇数),则an-1=a2t*u=(au)2t。先算出x=au mod n,再把x平方t次,每次模上n,这样我们就得到了一个长度为t+1的序列。我们希望这个序列以1结尾,并且若某一项为1,则前一项必须为1或n-1,否则n就是合数。

  这并不是简单地验证一下费马小定理。Miller Rabin会对一个数进行s次测试,其出错率低至2-s

  然后是代码(喜人的rand):

#include <cstdio>
#include <cstdlib>
#include <ctime>
using namespace std; inline long long pow(long long a, long long b, long long p){
long long ans = % p;
while(b){
if(b & ) ans = ans * a % p;
a = a * a % p;
b >>= ;
}
return ans;
} inline bool judge(long long n, long long a){
long long u = , t = n - ;
while(t % == ) u++, t /= ;
long long x = pow(a, t, n);
for(long long i = ; i <= u; i++){
long long next = x * x % n;
if(next == && x != && x != n - ) return true;
x = next;
}
return x == ? false : true;
} inline bool rabin(long long n){
if(n == ) return true;
if(n < || n % == ) return false;
for(long long i = ; i <= ; i++){
long long a = rand() % (n - ) + ;
if(judge(n, a)) return false;
}
return true;
} int main(){
srand(time());
long long t, in;
scanf("%lld", &t);
while(t--){
scanf("%lld", &in);
printf("%s\n", rabin(in) ? "yes" : "no");
}
return ;
}

  据说重庆OI出过一道Miller Rabin的题。

  总结:

    要点1.Miller Rabin是将费马小定理倒转过来,验证n是否存在非平凡平方根.

    要点2.平凡平方根:x2Ξ1(mod n),x=1或x=n-1

    要点3.对于基数a的判断基于倍增的思想.

与数论的厮守01:素数的测试——Miller Rabin的更多相关文章

  1. 关于素数:求不超过n的素数,素数的判定(Miller Rabin 测试)

    关于素数的基本介绍请参考百度百科here和维基百科here的介绍 首先介绍几条关于素数的基本定理: 定理1:如果n不是素数,则n至少有一个( 1, sqrt(n) ]范围内的的因子 定理2:如果n不是 ...

  2. 【数论基础】素数判定和Miller Rabin算法

    判断正整数p是否是素数 方法一 朴素的判定   

  3. Miller Rabin 大素数测试

    PS:本人第一次写随笔,写的不好请见谅. 接触MillerRabin算法大概是一年前,看到这个算法首先得为它的神奇之处大为赞叹,竟然可以通过几次随机数据的猜测就能判断出这数是否是素数,虽然说是有误差率 ...

  4. POJ1811_Prime Test【Miller Rabin素数测试】【Pollar Rho整数分解】

    Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...

  5. 与数论的厮守02:整数的因子分解—Pollard_Rho

    学Pollard_Rho之前,你需要学会:Miller Rabin. 这是一个很高效的玄学算法,用来对大整数进行因数分解. 我们来分解n.若n是一个素数,那么就不需要分解了.所以我们还得能够判断一个数 ...

  6. HDU1164_Eddy&#39;s research I【Miller Rabin素数测试】【Pollar Rho整数分解】

    Eddy's research I Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  7. POJ2429_GCD &amp; LCM Inverse【Miller Rabin素数測试】【Pollar Rho整数分解】

    GCD & LCM Inverse Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9756Accepted: 1819 ...

  8. POJ1811_Prime Test【Miller Rabin素数測试】【Pollar Rho整数分解】

    Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...

  9. Miller Rabin素数检测与Pollard Rho算法

    一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是 ...

随机推荐

  1. RSA/SHA1加密和数字签名算法在开放平台中的应用

    加密算法 加密算法分为两大类:1.对称加密算法:2.非对称加密算法.   密钥个数 加密 解密 对称加密 一个 使用密钥加密 使用同一个密钥解密 非对称加密 两个,公钥和私钥 使用其中一把密钥加密 使 ...

  2. hdoj:2076

    夹角有多大(题目已修改,注意读题) Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  3. ORACLE拼日期

    Oracle数据库拼字符串是用"||"连接的.在开发中,经常会用到时间范围的查询 例如  startTime >='2017-05-22 00:00:00' and endT ...

  4. 微服务架构的服务与发现-Spring Cloud

    1 为什么需要服务发现 简单来说,服务化的核心就是将传统的一站式应用根据业务拆分成一个一个的服务,而微服务在这个基础上要更彻底地去耦合(不再共享DB.KV,去掉重量级ESB),并且强调DevOps和快 ...

  5. IE 浏览器不支持 ES6 Array.from(new Set( )) SCRIPT438: 对象不支持“from”属性

    [转]解决老浏览器不支持ES6的方法 现象: Array.from(new Set( )) SCRIPT438: 对象不支持“from”属性或方法   解决方法: 安装babel 引入browser. ...

  6. IDEA-各模块间引用出现问题的解决方法

    1 点击项目右上角的Project Structure 2 选择Modules->父项目->点击右上角的加号->添加需要依赖的模块

  7. 使用ionic2开发一个二维码扫描功能

    界面添加一个按钮: <button ion-button block color="secondary" class="Scan-button" (cli ...

  8. Go VSCode配置编译task

    菜单栏Tasks->Configure Tasks { "version": "2.0.0", "tasks": [ { " ...

  9. 基于Schema配置切面

        使用基于Schema的切面定义后,切点.增强类型的注解信息从切面类中剥离出来,原来的切面类也就蜕变为真正意义上的POJO了. 1.一个简单切面的配置 基于Schema配置的切面示例: < ...

  10. WKWebView实现网页静态资源优先从本地加载

    前言:最近微信的小游戏跳一跳特别的火,顺便也让h5小游戏更加的火热.另外微信小程序,以及支付宝的小程序都是用H5写的.无论是小游戏还是小程序,这些都需要加载更多的资源文件,处理更多的业务.这些都对网页 ...