Micro和Macro性能学习【转载】
1.计算方式不同
A macro-average will compute the metric independently for each class and then take the average (hence treating all classes equally)
宏平均会对每类独立地计算指标(精度、召回率、F1值),并且取平均,每类都会平等计算。
a micro-average will aggregate the contributions of all classes to compute the average metric.
微平均会统计所有类的分布来计算平均指标。
In a multi-class classification setup, micro-average is preferable if you suspect there might be class imbalance (i.e you may have many more examples of one class than of other classes).
在多分类中,如果你怀疑有类不均衡存在,使用微平均更好。
2.例子
假设对于精度计算,
,假设现有1对多分类任务,共有4类:
- Class A: 1 TP and 1 FP
- Class B: 10 TP and 90 FP
- Class C: 1 TP and 1 FP
- Class D: 1 TP and 1 FP
以上为测试用的数据,可以根据上式计算得到:


对于以上计算结果,由于A、C、D三类的精度是0.5,所以宏平均看起来得到了一个不错的精度为0.4,但是具有误导性,因为B中有一大部分并没有进行正确的分类;
在本例中,B类数据占了94.3%,很明显是存在类不平衡的,微平均能更好的反应结果。
3.计算方法
3.1在计算中,可以先计算类平均,然后是宏平均,之后给出总的标准差:

3.2另一种是使用加权计算的方法,权重是本类样本总数所占的比例:

3.3从以上可以看出,0.173标准差,意味着精度为0.4并不代表各类都是均匀分布的;第二种使用加权的计算方式正是微平均的本质。
Micro和Macro性能学习【转载】的更多相关文章
- F1 score,micro F1score,macro F1score 的定义
F1 score,micro F1score,macro F1score 的定义 2018年09月28日 19:30:08 wanglei_1996 阅读数 976 本篇博客可能会继续更新 最近在 ...
- Java多线程学习(转载)
Java多线程学习(转载) 时间:2015-03-14 13:53:14 阅读:137413 评论:4 收藏:3 [点我收藏+] 转载 :http://blog ...
- Windows Services 学习(转载)
转载:http://blog.csdn.net/fakine/article/details/42107571 一.学习点滴 1.本机服务查看:services.msc /s2.服务手动安装(使用sc ...
- 机器学习--Micro Average,Macro Average, Weighted Average
根据前面几篇文章我们可以知道,当我们为模型泛化性能选择评估指标时,要根据问题本身以及数据集等因素来做选择.本篇博客主要是解释Micro Average,Macro Average,Weighted A ...
- GJM : FlatBuffers 与 protobuf 性能比较 [转载 ]
原帖地址:http://blog.csdn.net/menggucaoyuan/article/details/34409433 原作者:企鹅 menggucaoyuan 未经原作者同意不允许转载 ...
- Graphic32中TBitmap32.TextOut性能分析[转载]
转载:http://blog.csdn.net/avan_lau/article/details/6958497 最近在分析软件中画线效率问题,发现在画一些标志性符号的方法,存在瓶颈,占用较大的时间. ...
- JVM的相关知识整理和学习--(转载)
JVM是虚拟机,也是一种规范,他遵循着冯·诺依曼体系结构的设计原理.冯·诺依曼体系结构中,指出计算机处理的数据和指令都是二进制数,采用存储程序方式不加区分的存储在同一个存储器里,并且顺序执行,指令由操 ...
- Tomcat性能优化(转载)
出处:微信订阅号GitChat精品课程 — Tomcat性能优化 Tomcat 简单介绍 Sun 公司创建了第一个 Servlet 容器,即 Java Web Server,但 JWS 只是为了演示 ...
- 性能学习随笔(1)--负载均衡之f5负载均衡
负载均衡设计涉及软件负载和硬件负载,下文转自CSDN中一篇文章涉及f5硬负载知识 ----转载:https://blog.csdn.net/tvk872/article/details/8063489 ...
随机推荐
- XML格式化工具
做接口开发的时候,往往接受参数或返回值是一个XML的字符串.如下图,不方便辨识 两种方法, 1.将它保存为xxx.xml,然后用浏览器打开.这种方法稍微有些麻烦. 2.使用 UltraEdit 工具
- 【nodejs】exports 和 module.exports 的区别
require 用来加载代码,而 exports 和 module.exports 则用来导出代码.但很多新手可能会迷惑于 exports 和 module.exports 的区别,为了更好的理解 e ...
- DTD约束简介
DTD约束简介 文档类型声明 文档类型声明就是DOCTYPE,它告诉解析器,XML文档必须遵循DTD定义.同时,他也告诉解析器,到哪里找到文档定义的其余内容.在前边的例子里DOCTYPE很简单: &l ...
- MOD(motion Object Detection)介绍
Motion Detection or Moving Object Detection 称之为运动侦测,移动侦测,移动检测 MOD全称为Moving Object Detection,中文“移动物体检 ...
- java改单个插入为批量插入
单条insert into table value() 13W数据需要执行7小时 变成inert into table value(),(),(),(),() inert into table val ...
- pytest学习 一
网上有很多这样的资料,学起来还是比较简单,为了将学到的东西应用于工程化,参考这样的样板代码: https://github.com/jeffmacdonald/pytest_test 将其下载到C:\ ...
- 为什么要用kafka、rabbit等消息队列
1.解耦: 允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束. 2.冗余: 消息队列把数据进行持久化直到它们已经被完全处理,通过这一方式规避了数据丢失风险.许多消息队列所采用的&q ...
- gitlab-ci + k8s 之docker (三)
docker 在本系列(一)中(https://www.cnblogs.com/huandada/p/9965771.html)的runner_tomcat.sh脚本有涉及到镜像的推送,本文主要记录整 ...
- 11.8luffycity(3)
2018-11-8 19:11:49 打算过几天回学校! 越努力越幸运~!永远不要高估自己! 做一下笔记,等路飞项目做完放上github连接 1. 复杂的跨域 class CORSMiddleware ...
- 把html页面转化成图片——html2canvas
test.html <div class="fx_zhezhao"></div> <div class="myImg"> & ...