在MySQL中,IN查找经常出现性能问题,相同SQL在MySQL不同版本中表现不同。

准备测试数据:

## 创建表tb001
CREATE TABLE tb001(
id INT unsigned NOT NULL AUTO_INCREMENT,
cid INT unsigned NOT NULL DEFAULT 0,
c1 VARCHAR(50) NOT NULL DEFAULT '',
c2 VARCHAR(50) NOT NULL DEFAULT '',
c3 VARCHAR(50) NOT NULL DEFAULT '',
c4 VARCHAR(50) NOT NULL DEFAULT '',
c5 VARCHAR(50) NOT NULL DEFAULT '',
c6 VARCHAR(50) NOT NULL DEFAULT '',
PRIMARY KEY(id),
INDEX idx_cid(cid)
); ## 第一次插入数据
INSERT INTO tb001
select NULL,
FLOOR(RAND() * 1000000),
REPEAT('a', 50),
REPEAT('a', 50),
REPEAT('a', 50),
REPEAT('a', 50),
REPEAT('a', 50),
REPEAT('a', 50)
from information_schema.COLUMNS; ## 循环执行多次,使得tb001中包含百万数据
INSERT INTO tb001
select NULL,
FLOOR(RAND() * 1000000),
REPEAT('a', 50),
REPEAT('a', 50),
REPEAT('a', 50),
REPEAT('a', 50),
REPEAT('a', 50),
REPEAT('a', 50)
FROM tb001; ## 创建表tb002
CREATE TABLE tb002(
id int NOT NULL AUTO_INCREMENT primary key,
cid int
) ## 向表中插入10条数据,cid值分散
INSERT INTO tb002(cid)
SELECT cid FROM tb001
order by id desc
LIMIT 10

表tb0001中包含上百万数据,表tb002中包含10条数据。

================================================================================

测试SQL 1:

SELECT *
FROM tb001
WHERE cid IN(
SELECT cid FROM tb002
);

MySQL 5.5.14版本执行计划为:

## MySQL 5.5.14版本执行计划
+----+--------------------+-------+------+---------------+------+---------+------+---------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+--------------------+-------+------+---------------+------+---------+------+---------+-------------+
| 1 | PRIMARY | tb001 | ALL | NULL | NULL | NULL | NULL | 4080170 | Using where |
| 2 | DEPENDENT SUBQUERY | tb002 | ALL | NULL | NULL | NULL | NULL | 10 | Using where |
+----+--------------------+-------+------+---------------+------+---------+------+---------+-------------+

MySQL 5.7.24版本执行计划为:

## MySQL 5.7.24版本
+----+--------------+-------------+------------+------+---------------+---------+---------+-----------------+------+----------+-----------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+--------------+-------------+------------+------+---------------+---------+---------+-----------------+------+----------+-----------------------+
| 1 | SIMPLE | <subquery2> | NULL | ALL | NULL | NULL | NULL | NULL | NULL | 100.00 | Using where |
| 1 | SIMPLE | tb001 | NULL | ref | idx_cid | idx_cid | 4 | <subquery2>.cid | 5 | 100.00 | Using index condition |
| 2 | MATERIALIZED | tb002 | NULL | ALL | NULL | NULL | NULL | NULL | 10 | 100.00 | NULL |
+----+--------------+-------------+------------+------+---------------+---------+---------+-----------------+------+----------+-----------------------+

在MySQL 5.7.24版本使用FORMAT=JOSN查看执行计划:

{
"query_block": {
"select_id": ,
"cost_info": {
"query_cost": "80.25"
},
"nested_loop": [
{
"table": {
"table_name": "<subquery2>",
"access_type": "ALL",
"attached_condition": "(`<subquery2>`.`cid` is not null)",
"materialized_from_subquery": {
"using_temporary_table": true,
"query_block": {
"table": {
"table_name": "tb002",
"access_type": "ALL",
"rows_examined_per_scan": ,
"rows_produced_per_join": ,
"filtered": "100.00",
"cost_info": {
"read_cost": "1.00",
"eval_cost": "2.00",
"prefix_cost": "3.00",
"data_read_per_join": ""
},
"used_columns": [
"cid"
]
}
}
}
}
},
{
"table": {
"table_name": "tb001",
"access_type": "ref",
"possible_keys": [
"idx_cid"
],
"key": "idx_cid",
"used_key_parts": [
"cid"
],
"key_length": "",
"ref": [
"<subquery2>.cid"
],
"rows_examined_per_scan": ,
"rows_produced_per_join": ,
"filtered": "100.00",
"index_condition": "(`demodb`.`tb001`.`cid` = `<subquery2>`.`cid`)",
"cost_info": {
"read_cost": "59.37",
"eval_cost": "1.19",
"prefix_cost": "80.25",
"data_read_per_join": "5K"
},
"used_columns": [
"id",
"cid",
"c1",
"c2",
"c3",
"c4",
"c5",
"c6"
]
}
}
]
}
}

在MySQL 5.5.14版本中,循环遍历tb001表中每行记录去做IN条件判断,执行时间超过5分钟

在MySQL 5.7.24版本中,会将IN条件中数据固化(materialized_from_subquery)形成派生表subquery2,并且推断出cid is not null,再循环遍历subquery2中每条记录,去tb001中按照cid列上进行INDEX SEEK,查询执行低于10ms

================================================================================

测试SQL2:

将tb002中数据显示放入到IN列表中,最终SQL为:

SELECT *
FROM tb001
WHERE cid IN(
116672,660886,729254,328461,971017,508875,524453,704463,332621,986215
)

MySQL 5.5.14版本执行计划为:

## MySQL 5.5.14版本
+----+-------------+-------+-------+---------------+---------+---------+------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+-------+---------------+---------+---------+------+------+-------------+
| 1 | SIMPLE | tb001 | range | idx_cid | idx_cid | 4 | NULL | 70 | Using where |
+----+-------------+-------+-------+---------------+---------+---------+------+------+-------------+

MySQL 5.7.24版本执行计划为:

## MySQL 5.7.24版本
+----+-------------+-------+------------+-------+---------------+---------+---------+------+------+----------+-----------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+-------+---------------+---------+---------+------+------+----------+-----------------------+
| 1 | SIMPLE | tb001 | NULL | range | idx_cid | idx_cid | 4 | NULL | 67 | 100.00 | Using index condition |
+----+-------------+-------+------------+-------+---------------+---------+---------+------+------+----------+-----------------------+

排除MySQL 5.7版本中新增加的partitions和filtered两列,两个版本执行计划相同,执行时间类似,均低于10ms。

两个版本上使用PROFILING工具查看,执行消耗类似,主要消耗在Sending data部分。

+----------------------+----------+----------+------------+--------------+---------------+-------+
| Status | Duration | CPU_user | CPU_system | Block_ops_in | Block_ops_out | Swaps |
+----------------------+----------+----------+------------+--------------+---------------+-------+
| starting | 0.000067 | 0.000000 | 0.000000 | 0 | 0 | 0 |
| checking permissions | 0.000008 | 0.000000 | 0.000000 | 0 | 0 | 0 |
| Opening tables | 0.000018 | 0.000000 | 0.000000 | 0 | 0 | 0 |
| init | 0.000037 | 0.000000 | 0.000000 | 0 | 0 | 0 |
| System lock | 0.000011 | 0.000000 | 0.000000 | 0 | 0 | 0 |
| optimizing | 0.000011 | 0.000000 | 0.000000 | 0 | 0 | 0 |
| statistics | 0.000211 | 0.000000 | 0.000000 | 0 | 0 | 0 |
| preparing | 0.000020 | 0.000000 | 0.000000 | 0 | 0 | 0 |
| executing | 0.000003 | 0.000000 | 0.000000 | 0 | 0 | 0 |
| Sending data | 0.000863 | 0.000999 | 0.000000 | 0 | 0 | 0 |
| end | 0.000007 | 0.000000 | 0.000000 | 0 | 0 | 0 |
| query end | 0.000013 | 0.000000 | 0.000000 | 0 | 0 | 0 |
| closing tables | 0.000008 | 0.000000 | 0.000000 | 0 | 0 | 0 |
| freeing items | 0.000029 | 0.000000 | 0.000000 | 0 | 0 | 0 |
| cleaning up | 0.000015 | 0.000000 | 0.000000 | 0 | 0 | 0 |
+----------------------+----------+----------+------------+--------------+---------------+-------+

================================================================================

测试SQL3: 将IN查询中的值数量升级到1000个

SELECT *
FROM tb001
WHERE cid IN(
116672,660886,729254,328461,971017,508875,524453,704463,332621,986215,866151,114847,236027,355097,179820,848000,20061,750768,577927,46289,884506,125414,247522,370732,202046,546500,510151,334752,54537,979311,280673,141351,808694,634040,787169,767269,683058,549341,21216,852246,413339,738149,759136,352510,1139,217728,695834,753814,24412,122749,529778,175380,782375,912165,592817,350640,386794,861110,972919,1162,10964,17887,692823,815410,128075,274989,82291,378821,937272,102514,191765,952105,856253,109720,564116,236953,873550,710266,225927,139790,491008,105084,344804,872979,6697,720169,864716,201138,46991,677939,780901,742190,310016,269296,345489,152716,139365,181369,255827,365922,191261,196795,264238,374799,536585,769376,770099,360373,343922,453079,973825,472015,128750,57246,385826,623962,577995,755338,66232,858607,75601,506466,485577,973807,461152,443985,919591,51324,445677,59020,283141,452228,326000,392591,212319,556335,856452,575308,6696,486058,807865,517756,593638,150145,719029,148334,7547,296467,491596,387171,481420,6643,850599,415450,408884,876324,657578,470523,898345,340401,934554,444123,762021,788661,393761,60048,968827,928029,557106,952500,735131,907719,267822,810464,594832,721233,337111,988107,201142,339201,164954,828523,659221,489194,928916,51796,776687,943881,314239,875771,21539,410642,10557,880715,464339,146994,756877,879131,546259,617388,846894,872361,504970,550830,83060,954824,897020,510092,551147,415215,174976,486556,419268,536594,421235,856526,620466,415268,151958,114842,140750,862970,58033,142398,217986,315845,453746,317628,44799,302122,488604,380299,137631,769285,902931,581791,335341,364971,163172,483630,84993,980445,939078,238315,84166,60838,73342,101958,812149,319595,261943,996707,240530,401982,589793,515662,662839,599511,778239,430561,458189,953461,103039,520579,833285,881949,192153,359606,535292,438951,219822,886719,71259,156525,903788,787472,677858,533940,997280,484154,141164,407221,631648,250340,206684,594360,588372,115834,663600,67388,224447,18283,955656,253332,103668,421670,1561,528711,547332,735983,44194,161663,588041,926180,14287,381752,631491,591901,109338,651597,382883,754272,129493,297731,119721,433624,16134,549015,242980,888629,66722,814994,669416,844029,183576,691284,90948,254486,727160,793772,413900,91910,681883,105835,282431,435440,298257,685281,709383,953878,353336,270935,333779,465988,998720,509204,515767,689877,977873,66495,784868,952616,659404,448134,860423,617993,743182,365972,362226,815053,904346,902227,535596,258584,919108,778986,991941,393573,658641,633211,169139,404161,283889,671761,358306,706590,391548,83717,9012,320448,864410,667200,157197,372929,902483,46495,443331,56720,613423,3466,801302,1015,734591,223981,461771,28291,893228,812617,389953,379049,835098,265480,164101,851675,698091,212927,455515,688217,661856,207022,791084,916134,929861,244391,430698,636367,250379,871843,702945,880961,900620,207381,712094,784364,736575,966171,698093,508098,280800,965300,848567,92512,871331,88049,522971,175602,118346,472043,80623,310358,490389,47196,581863,620707,507224,971805,783933,315954,598613,225703,843301,330268,936013,116599,215661,987235,573506,960098,742328,583847,725637,14779,782753,632995,794074,112459,589407,944859,44963,759985,584987,388317,785534,846450,148906,299360,449298,315711,43085,299906,152148,153611,538636,179857,786883,584852,712460,992482,83318,808035,318953,595577,886311,278659,835662,966550,332363,231755,275471,48533,322399,187820,205567,613339,620376,496181,953509,90456,832923,691387,541337,671766,605831,119130,663274,732413,332930,310747,73601,352420,229499,265026,31876,964786,264017,451767,331606,735422,448501,169028,465546,52902,266321,759568,843839,486543,196292,831639,320635,257178,655086,339417,680667,354639,697510,44304,174670,276348,402357,245147,607792,597938,793966,123964,941952,528598,233680,546601,833108,872981,510598,560004,429807,196344,850638,352283,303592,55226,990846,633002,58054,885757,123577,244043,698879,750118,17238,112023,180960,597592,602334,138026,29265,669433,439301,842357,590828,370595,754049,799883,748456,647466,162958,55774,371971,934694,433834,411492,207875,542628,501755,655383,591720,767739,82326,547963,219164,515952,120199,695015,784959,743260,643780,491880,605207,844718,872795,173086,664212,382658,749693,455269,175551,807496,953976,987462,661112,106032,289684,780795,871431,192121,29724,318833,521481,429524,208714,871348,716009,902899,932829,587082,861,805741,342614,635777,278757,252670,661531,351662,365593,825435,920527,925733,569380,640389,544189,693518,974468,392940,996745,530261,884854,631337,757277,718349,278156,224144,947521,171155,636084,3089,793120,320837,270355,676980,704848,282421,235752,632113,308271,303081,69045,680715,778177,736723,635146,479670,254401,930779,799831,689459,215822,129883,144532,864259,725588,587894,737960,700636,255074,524911,456494,585854,157592,734035,170861,373424,898753,40114,100606,820973,1419,395375,991819,187906,649238,686094,260411,871987,699842,209075,781844,566715,17244,839836,393978,376685,829816,590799,708059,649832,847034,528447,265067,598963,576582,761316,743333,318450,616306,921026,996276,353451,590326,866060,246658,789077,899576,236268,760588,522224,950178,409555,365866,473258,142,842484,404093,725994,75292,550156,558496,414108,837348,257544,816791,942138,964633,293675,834582,959744,654713,771275,400553,77164,661756,77205,574757,932194,695404,514942,293102,316856,430394,278371,653820,663577,888021,925510,246510,102347,755075,224343,788880,906686,914850,555855,954808,739396,914057,943630,601364,687731,945763,680362,818682,471016,512133,29884,545762,566309,95261,969998,584910,984851,446449,415798,210847,212813,951073,180850,984393,247039,416934,612543,215261,487921,74781,295328,800620,569258,348556,724508,91329,910712,487410,842113,907719,565494,639918,211365,138969,161160,222277,316742,453811,317438,377793,190510,524918,478028,955074,765780,291276,563534,842131,215707,745468,170545,369085,891627,363017,641153,280917,587810,552712,391917,135624,762068,224905,120819,459731,725945,723331,296904,253730,323915,788616,873055,525553,251570,577433,211865,160630,863762,52728,799959,315689,592828,882818,273754,495317,734278,392024,408615,550350,114378,340514,529397,102158,327131,177832,520677,141850,729525,501926,260034,599416,579015,765219,415694,771084,146576,653932,707695,961514,366626,957205,139799,913931,476619,489721,990662,487864,816219,197744,724167,141031,993663,275761,795048,233159,790250,239364,135523,479417,753854,763285,687524,224778,145456,167500,564015,217525,841204,996165,379874,967736,819602,710091,243618,836000,312127,574879,520756,342967,398027,882389,671306,158047,372977,902279,712807,553919,18929,180242,960761,207854,26170,974332,281830,811606,592067,716243,663050,199669,111765,786386,606722,749075,379551,382893,844972,280656,186103,216620,298999,92791,721653,505158,934712,722802,893099,247564,781574,220102,106313,437154,359819
)

测试SQL3执行情况与测试SQL2执行情况相近。

MySQL Execution Plan--IN查询计划(2)的更多相关文章

  1. MySQL Execution Plan--IN子查询包含超多值引发的查询异常

    问题描述 版本:MySQL 5.7.24 SQL语句: SELECT wave_no, SUM(IF(picking_qty IS NULL, 0, picking_qty)) AS PICKED_Q ...

  2. MySQL Execution Plan--NOT IN查询

    在某系统中想使用NOT IN子查询进行数据过滤,SQL为: SELECT * FROM TB001 AS T1 DAY) AND T1.BATCH_NO NOT IN(SELECT BATCH_NO ...

  3. Mysql优化之Explain查询计划查看

    我们经常说到mysql优化,优化中一种常见的方式就是对于经常查询的字段创建索引.那么mysql中有哪些索引类型呢? 一.索引分类1.普通索引:即一个索引只包含单个列,一个表可以有多个单列索引 2.唯一 ...

  4. MySQL Execution Plan--IN子查询对UPDATE语句影响

    问题描述 在系统中发现一条执行时间为为44652.060734秒(12.5小时)的慢SQL,SQL语句为: UPDATE ob_internal_task SET OPERATE_STATUS WHE ...

  5. MySQL Execution Plan--IN子查询包含超多值引发的查询异常1

    ======================================================================= SQL语句: SELECT wave_no, SUM(I ...

  6. Execution Plan 执行计划介绍

    后面的练习中需要下载 Demo 数据库, 有很多不同的版本, 可以根据个人需要下载.  下载地址 -http://msftdbprodsamples.codeplex.com/ 1. 什么是执行计划 ...

  7. SQLServer查询计划

    参考:http://blog.csdn.net/luoyanqing119/article/details/17022649 1. 开启方式 菜单栏:query---Display Estimated ...

  8. sql server 执行计划(execution plan)介绍

    大纲:目的介绍sql server 中执行计划的大致使用,当遇到查询性能瓶颈时,可以发挥用处,而且带有比较详细的学习文档和计划,阅读者可以按照我计划进行,从而达到对执行计划一个比较系统的学习. 什么是 ...

  9. MySQL的查询计划中ken_len的值计算

    本文首先介绍了MySQL的查询计划中ken_len的含义:然后介绍了key_len的计算方法:最后通过一个伪造的例子,来说明如何通过key_len来查看联合索引有多少列被使用. key_len的含义 ...

  10. MYSQL查询计划KEY_LEN

    http://www.innomysql.com/article/25241.html 1 key_len的含义 2 MySQL中key_len计算规则 3 通过key_len分析联合索引 本文首先介 ...

随机推荐

  1. 使用 R 语言挖掘 QQ 群聊天记录

    1.获取数据 从 QQ 消息管理器中导出消息记录,保存的文本类型选择 txt 文件.这里获取的是某群从 2016-04-18 到 2016-05-07 期间的聊天记录,记录样本如下所示. 消息记录(此 ...

  2. linux存储管理之自动挂在

    自动挂载 Automount ==================================================================================== ...

  3. 【新知识】队列&bfs【洛谷p1996约瑟夫问题&洛谷p1451求细胞数量】

    (是时候为五一培训准备真正的技术了qwq) part1  队列(FIFO) 算法简介: FIFO:First In First Out(先进先出) 队列是限定在一端进行插入,另一端进行删除的特殊线性表 ...

  4. Android app图标总是显示默认的机器人图标,且在manifest文件的application中修改无效...

    问题描述:我使用的开发工具是eclipse,Android app默认的图标是一个机器人,如下图所示 现在我要将app的图标修改成另外一个图标: 探索过程: 首先想到修改Manifest文件中的app ...

  5. 『TensorFlow』正则化添加方法整理

    一.基础正则化函数 tf.contrib.layers.l1_regularizer(scale, scope=None) 返回一个用来执行L1正则化的函数,函数的签名是func(weights).  ...

  6. day 01 python基础

    1.计算机历史 2.python历史 宏观: python2和python3的区别: python2  源码不标准,混乱,重复代码过多 python3  统一标准,去除重复代码 3.python环境 ...

  7. trap(陷井)

    if True: x = 15 print(x)print(x) # 可见 if 语句,不是一个代码块,因为代码块有独立的作用域,代码块结束时,会释放变量 l1 = [1,2,3,4]print(id ...

  8. tensorFlow(四)浅层神经网络

    tensorFlow见基础 实验 MNIST数据集介绍 MNIST是一个手写阿拉伯数字的数据集. 其中包含有60000个已经标注了的训练集,还有10000个用于测试的测试集. 本次实验的任务就是通过手 ...

  9. Centos7 systemctl和防火墙firewalld命令(参考https://www.cnblogs.com/marso/archive/2018/01/06/8214927.html)

    一.防火墙的开启.关闭.禁用命令 (1)设置开机启用防火墙:systemctl enable firewalld.service (2)设置开机禁用防火墙:systemctl disable fire ...

  10. Delphi xe8 FMX StringGrid根据内容自适应列宽。

    Delphi xe8 FMX StringGrid根据内容自适应列宽. 网上的资料比较复杂,而且不是根据字体字号等设置列宽.故自己写了个function来用. function GetColMaxDa ...