#调整随机森林的参数(调整n_estimators随机森林中树的数量默认10个树,精度递增显著)

from sklearn import datasets
X, y = datasets.make_classification(n_samples=10000,n_features=20,n_informative=15,flip_y=.5, weights=[.2, .8]) import numpy as np
training = np.random.choice([True, False], p=[.8, .2],size=y.shape) from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import confusion_matrix n_estimator_params = range(1, 100,5)
confusion_matrixes = {}
for n_estimator in n_estimator_params:
rf = RandomForestClassifier(n_estimators=n_estimator,n_jobs=-1, verbose=True)
rf.fit(X[training], y[training])
print ("Accuracy:\t", (rf.predict(X[~training]) == y[~training]).mean()) '''
======================== RESTART: E:/python/pp138.py ========================
[Parallel(n_jobs=-1)]: Done 1 out of 1 | elapsed: 0.0s finished
[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 0.0s finished
Accuracy: 0.590083456063
[Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 0.1s finished
[Parallel(n_jobs=2)]: Done 6 out of 6 | elapsed: 0.0s finished
Accuracy: 0.618065783014
[Parallel(n_jobs=-1)]: Done 11 out of 11 | elapsed: 0.3s finished
[Parallel(n_jobs=2)]: Done 11 out of 11 | elapsed: 0.0s finished
Accuracy: 0.682866961217
[Parallel(n_jobs=-1)]: Done 16 out of 16 | elapsed: 0.5s finished
[Parallel(n_jobs=2)]: Done 16 out of 16 | elapsed: 0.0s finished
Accuracy: 0.692194403535
[Parallel(n_jobs=-1)]: Done 21 out of 21 | elapsed: 0.6s finished
[Parallel(n_jobs=2)]: Done 21 out of 21 | elapsed: 0.0s finished
Accuracy: 0.702012763868
[Parallel(n_jobs=-1)]: Done 26 out of 26 | elapsed: 0.9s finished
[Parallel(n_jobs=2)]: Done 26 out of 26 | elapsed: 0.0s finished
Accuracy: 0.697594501718
[Parallel(n_jobs=-1)]: Done 31 out of 31 | elapsed: 1.0s finished
[Parallel(n_jobs=2)]: Done 31 out of 31 | elapsed: 0.0s finished
Accuracy: 0.710358370152
[Parallel(n_jobs=-1)]: Done 36 out of 36 | elapsed: 1.1s finished
[Parallel(n_jobs=2)]: Done 36 out of 36 | elapsed: 0.0s finished
Accuracy: 0.704958271969
[Parallel(n_jobs=-1)]: Done 41 out of 41 | elapsed: 1.3s finished
[Parallel(n_jobs=2)]: Done 41 out of 41 | elapsed: 0.0s finished
Accuracy: 0.707412862052
[Parallel(n_jobs=-1)]: Done 46 out of 46 | elapsed: 1.5s finished
[Parallel(n_jobs=2)]: Done 46 out of 46 | elapsed: 0.0s finished
Accuracy: 0.716740304369
[Parallel(n_jobs=-1)]: Done 46 tasks | elapsed: 1.6s
[Parallel(n_jobs=-1)]: Done 51 out of 51 | elapsed: 1.8s finished
[Parallel(n_jobs=2)]: Done 46 tasks | elapsed: 0.0s
[Parallel(n_jobs=2)]: Done 51 out of 51 | elapsed: 0.0s finished
Accuracy: 0.713303878252
[Parallel(n_jobs=-1)]: Done 46 tasks | elapsed: 1.5s
[Parallel(n_jobs=-1)]: Done 56 out of 56 | elapsed: 1.8s finished
[Parallel(n_jobs=2)]: Done 46 tasks | elapsed: 0.0s
[Parallel(n_jobs=2)]: Done 56 out of 56 | elapsed: 0.0s finished
Accuracy: 0.713303878252
[Parallel(n_jobs=-1)]: Done 46 tasks | elapsed: 1.5s
[Parallel(n_jobs=-1)]: Done 61 out of 61 | elapsed: 2.0s finished
[Parallel(n_jobs=2)]: Done 46 tasks | elapsed: 0.0s
[Parallel(n_jobs=2)]: Done 61 out of 61 | elapsed: 0.0s finished
Accuracy: 0.717231222386
[Parallel(n_jobs=-1)]: Done 46 tasks | elapsed: 1.5s
[Parallel(n_jobs=-1)]: Done 66 out of 66 | elapsed: 2.3s finished
[Parallel(n_jobs=2)]: Done 46 tasks | elapsed: 0.0s
[Parallel(n_jobs=2)]: Done 66 out of 66 | elapsed: 0.0s finished
Accuracy: 0.711340206186
[Parallel(n_jobs=-1)]: Done 46 tasks | elapsed: 1.6s
[Parallel(n_jobs=-1)]: Done 71 out of 71 | elapsed: 2.5s finished
[Parallel(n_jobs=2)]: Done 46 tasks | elapsed: 0.0s
[Parallel(n_jobs=2)]: Done 71 out of 71 | elapsed: 0.0s finished
Accuracy: 0.720667648503
[Parallel(n_jobs=-1)]: Done 46 tasks | elapsed: 1.5s
[Parallel(n_jobs=-1)]: Done 76 out of 76 | elapsed: 2.4s finished
[Parallel(n_jobs=2)]: Done 46 tasks | elapsed: 0.0s
[Parallel(n_jobs=2)]: Done 76 out of 76 | elapsed: 0.0s finished
Accuracy: 0.721649484536
[Parallel(n_jobs=-1)]: Done 46 tasks | elapsed: 1.7s
[Parallel(n_jobs=-1)]: Done 81 out of 81 | elapsed: 3.0s finished
[Parallel(n_jobs=2)]: Done 46 tasks | elapsed: 0.0s
[Parallel(n_jobs=2)]: Done 81 out of 81 | elapsed: 0.0s finished
Accuracy: 0.721649484536
[Parallel(n_jobs=-1)]: Done 46 tasks | elapsed: 1.5s
[Parallel(n_jobs=-1)]: Done 86 out of 86 | elapsed: 2.8s finished
[Parallel(n_jobs=2)]: Done 46 tasks | elapsed: 0.0s
[Parallel(n_jobs=2)]: Done 86 out of 86 | elapsed: 0.0s finished
Accuracy: 0.716740304369
[Parallel(n_jobs=-1)]: Done 46 tasks | elapsed: 1.5s
[Parallel(n_jobs=-1)]: Done 91 out of 91 | elapsed: 3.1s finished
[Parallel(n_jobs=2)]: Done 46 tasks | elapsed: 0.0s
[Parallel(n_jobs=2)]: Done 91 out of 91 | elapsed: 0.0s finished
Accuracy: 0.72410407462
[Parallel(n_jobs=-1)]: Done 46 tasks | elapsed: 1.4s
[Parallel(n_jobs=-1)]: Done 96 out of 96 | elapsed: 3.1s finished
[Parallel(n_jobs=2)]: Done 46 tasks | elapsed: 0.0s
[Parallel(n_jobs=2)]: Done 96 out of 96 | elapsed: 0.0s finished
Accuracy: 0.718213058419
'''

#调整随机森林的参数(调整n_estimators随机森林中树的数量默认10个树,精度递增显著,但并不是越多越好),加上verbose=True,显示进程使用信息的更多相关文章

  1. #调整随机森林的参数(调整max_features,结果未见明显差异)

    #调整随机森林的参数(调整max_features,结果未见明显差异) from sklearn import datasets X, y = datasets.make_classification ...

  2. Linux 查找指定名称的进程并显示进程详细信息

    实际应用中可能有这样的场景:给定一个进程名称特征串,查找所有匹配该进程名称的进程的详细信息. 解决的办法是: (1) 先用pgrep [str] 命令进行模糊匹配,找到匹配该特征串的进程ID: (2) ...

  3. Sysctl命令及linux内核参数调整

        一.Sysctl命令用来配置与显示在/proc/sys目录中的内核参数.如果想使参数长期保存,可以通过编辑/etc/sysctl.conf文件来实现.    命令格式:  sysctl [-n ...

  4. sklearn中随机森林的参数

    一:sklearn中决策树的参数: 1,criterion: ”gini” or “entropy”(default=”gini”)是计算属性的gini(基尼不纯度)还是entropy(信息增益),来 ...

  5. XGBoost中参数调整的完整指南(包含Python中的代码)

    (搬运)XGBoost中参数调整的完整指南(包含Python中的代码) AARSHAY JAIN, 2016年3月1日     介绍 如果事情不适合预测建模,请使用XGboost.XGBoost算法已 ...

  6. TensorFlow实现超参数调整

    TensorFlow实现超参数调整 正如你目前所看到的,神经网络的性能非常依赖超参数.因此,了解这些参数如何影响网络变得至关重要. 常见的超参数是学习率.正则化器.正则化系数.隐藏层的维数.初始权重值 ...

  7. Galera集群server.cnf参数调整--Innodb存储引擎内存相关参数(一)

    在innodb引擎中,内存的组成主要有三部分:缓冲池(buffer pool),重做日志缓存(redo log buffer),额外的内存池(additional memory pool).

  8. paip.提升性能----jvm参数调整.txt

    paip.提升性能----jvm参数调整.txt 作者Attilax  艾龙,  EMAIL:1466519819@qq.com 来源:attilax的专栏 地址:http://blog.csdn.n ...

  9. Storm集群参数调整

    Supervisor 参数调整 修改${STORM_HOME}conf/storm.yaml文件内容 supervisor变更参数 slots 配置: 若storm host仅仅执行superviso ...

随机推荐

  1. Mysql -- SQL常用命令实例

    sql: structured query language(结构化查询语言) 用户名和密码:root 创建一个名称为mydb1的数据库. create database mydb1; 查看所有数据库 ...

  2. 爬虫之解析库-----re、beautifulsoup、pyquery

    一.介绍 Beautiful Soup 是一个可以从HTML或XML文件中提取数据的Python库.它能够通过你喜欢的转换器实现惯用的文档导航,查找,修改文档的方式.Beautiful Soup会帮你 ...

  3. java中集合类详解

    集合类说明及区别 Collection ├List │├LinkedList │├ArrayList │└Vector │ └Stack └Set Map ├Hashtable ├HashMap └W ...

  4. Nodejs调试技术总结

    调试技术与开发技术构成了软件开发的基石.目前Nodejs作为新型的Web Server开发栈倍受开发者关注.总的来说Nodejs的应用程序主要有两部分:JavaScript编写的js模块和C语言编译的 ...

  5. 二维码的扫描和生成--第三方开源--ZXing

    ZXing的二维码功能的提取lib下载地址:https://github.com/xuyisheng/ZXingLib 1.扫描二维码: 我们扫描就是要用到这个CaptureActivity类,直接把 ...

  6. 剑指offer--21.链表中倒数第k个结点

    定义两个指针,当一个指针指到第K个结点时,第二个指针开始向后移动 -------------- 时间限制:1秒 空间限制:32768K 热度指数:602826 本题知识点: 链表 题目描述 输入一个链 ...

  7. L122

    These plants have much of the same nutritional value that a real plant has. Search giant Google says ...

  8. 信息标记 以及信息提取--xml-json-yaml

    1 信息标记的三种方式:  XML: JSON: YAML: 1 缩进 表示所属关系:  2 - 表示并列关系:  3 | 表示整块数据:  HTML----XML的一种形式: 2 信息提取的方法: ...

  9. PHP Smarty template for website

    /****************************************************************************** * PHP Smarty templat ...

  10. Logstash详解之——input模块

    原文地址 Logstash由三个组件构造成,分别是input.filter以及output.我们可以吧Logstash三个组件的工作流理解为:input收集数据,filter处理数据,output输出 ...