Codeforces538F A Heap of Heaps(函数式线段树)
题意:给你一个数组a[n],对于数组每次建立一个完全k叉树,对于每个节点,如果父节点的值比这个节点的值大,那么就是一个违规点,统计出1~n-1完全叉树下的违规点的各自的个数。
一个直觉的思想就是暴力,因为完全k叉树当k很大的时候,其实层数是特别小的,所以感觉暴力是可以的。注意到一个完全k叉树下v节点的儿子的公式是:
k*(v-1)+2...kv+1,相应的父节点的公式是 (v+k-2)/k。儿子的编号是连续的,如果我们可以对每个节点快速的求出连续编号的节点有多少个数比它小我们就可以快速的更新答案了,但是如果对每个节点都这样做的话就至少是一个O(n^2)级别的做法。注意到对于一棵完全k叉树来说,只有内节点才需要统计,叶节点并不需要。而对于一个大小为n的完全k叉树来说,内节点的个数是O(n/k)的,因此总的内节点个数就是n/1+n/2+n/3+...n/n-1,即O(nlogn)。
然后就是单次询问一段连续的区间里有多少个数比v小。这里我没有想到什么好的简便的方法,不过函数式线段树是一个解决方法。root[i]表示的是用a[i]~a[n]的值建立的线段树,当我需要询问某个区间[l,r]的小于等于v的数有多少个数时,只需要query(root[l],1,v)-query(root[r],1,v)即可。空间复杂度是O(nlogn),时间复杂度是单次询问O(logn),最后总的复杂度就是O(nlog^2 n)
#pragma warning(disable:4996)
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
#include <string>
#include <vector>
#include <queue>
using namespace std; #define maxn 200500
#define maxc maxn*20 int n;
int a[maxn], b[maxn];
int res[maxn];
int root[maxn];
int nsize; int lc[maxc], rc[maxc];
int sum[maxc];
int tot; int insert(int rt, int L, int R, int v)
{
int cur = tot++;
if (L == R){
sum[cur] = sum[rt] + 1;
return cur;
}
int M = (L + R) >> 1;
if (v <= M){
rc[cur] = rc[rt];
lc[cur] = insert(lc[rt], L, M, v);
}
else{
lc[cur] = lc[rt];
rc[cur] = insert(rc[rt], M + 1, R, v);
}
sum[cur] = sum[lc[cur]] + sum[rc[cur]];
return cur;
} int query(int rt, int L, int R, int l, int r)
{
if (l == L&&r == R){
return sum[rt];
}
int M = (L + R) >> 1;
if (r <= M){
return query(lc[rt], L, M, l, r);
}
else if (l>M){
return query(rc[rt], M + 1, R, l, r);
}
else{
return query(lc[rt], L, M, l, M) + query(rc[rt], M + 1, R, M + 1, r);
}
} int main()
{
while (cin >> n)
{
for (int i = 1; i <= n; ++i) {
scanf("%d", a + i);
b[i] = a[i];
}
sort(b+1, b + n+1);
nsize = unique(b+1, b + n+1) - b;
for (int i = 1; i <= n; ++i){
a[i] = lower_bound(b + 1, b + nsize, a[i]) - b + 1;
}
memset(res, 0, sizeof(res));
tot = 1;
root[n + 1] = tot;
lc[tot] = rc[tot] = sum[tot] = 0;
tot++;
for (int i = n; i >= 1; i--){
root[i] = insert(root[i + 1], 1, nsize, a[i]);
}
for (int k = 1; k <= n - 1; ++k){
int maxBound = (n + k - 2) / k;
for (int v = 1; v <= maxBound; ++v){
int cnt = 0;
int lbound = k*(v - 1) + 2;
int rbound = min(k*v + 1, n);
cnt = query(root[lbound], 1, nsize, 1, a[v] - 1)- query(root[rbound+1], 1, nsize, 1, a[v] - 1);
res[k] += cnt;
}
}
for (int i = 1; i <= n - 1; ++i){
if (i > 1) printf(" ");
printf("%d", res[i]);
}
puts("");
}
return 0;
}
Codeforces538F A Heap of Heaps(函数式线段树)的更多相关文章
- [codeforces538F]A Heap of Heaps
[codeforces538F]A Heap of Heaps 试题描述 Andrew skipped lessons on the subject 'Algorithms and Data Stru ...
- 学习笔记--函数式线段树(主席树)(动态维护第K极值(树状数组套主席树))
函数式线段树..资瓷 区间第K极值查询 似乎不过似乎划分树的效率更优于它,但是如果主席树套树状数组后,可以处理动态的第K极值.即资瓷插入删除,划分树则不同- 那么原理也比较易懂: 建造一棵线段树(权值 ...
- POJ2104 K-th number 函数式线段树
很久没打代码了,不知道为什么,昨天考岭南文化之前突然开始思考起这个问题来,这个问题据说有很多种方法,划分树什么的,不过对于我现在这种水平还是用熟悉的线段树做比较好.这到题今年8月份的时候曾经做过,那个 ...
- BZOJ 3123 森林(函数式线段树)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=3123 题意: 思路:总的来说,查询区间第K小利用函数式线段树的减法操作.对于两棵树的合并 ...
- BZOJ 3207 花神的嘲讽计划Ⅰ(函数式线段树)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=3207 题意:给出一个数列,若干询问.每个询问查询[L,R]区间内是否存在某个长度为K的子 ...
- [Usaco2014 Open Gold ]Cow Optics (树状数组+扫描线/函数式线段树)
这道题一上手就知道怎么做了= = 直接求出原光路和从目标点出发的光路,求这些光路的交点就行了 然后用树状数组+扫描线或函数式线段树就能过了= = 大量的离散+模拟+二分什么的特别恶心,考试的时候是想到 ...
- hdu 5111 树链剖分加函数式线段树
这题说的是给了两棵树,各有100000 个节点,然后Q个操作Q<=50000; 每个操作L1 R1 L2 R2.因为对于每棵树都有一个与本棵树其他点与众不同的值, 最后问 在树上从L1到R1这条 ...
- BZOJ 3110([Zjoi2013]K大数查询-区间第k大[段修改,在线]-树状数组套函数式线段树)
3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec Memory Limit: 512 MB Submit: 418 Solved: 235 [ Submit][ ...
- 【bzoj3065】: 带插入区间K小值 详解——替罪羊套函数式线段树
不得不说,做过最爽的树套树———— 由于有了区间操作,我们很容易把区间看成一棵平衡树,对他进行插入,那么外面一层就是平衡树了,这就与我们之前所见到的不同了.我们之前所见到的大多数是线段树套平衡树而此题 ...
随机推荐
- python ranndom模块及生成验证码
python的random模块用于生成随机数,下面介绍一下random模块的常用方法: 取随机小数: 数学计算 random.random() 用于生成一个0-1的随机浮点数 0<=n<1 ...
- Android 如何在xmL 里面动态设置padding
如题,Android 如何在xmL 里面动态设置padding 有时候,你的布局加载完成之后,你findViewByid 找到控件,设置padding 会导致白条,布局闪动,那怎么办呢? 你是不是就想 ...
- Service Intent must be explicit
参考: http://blog.csdn.net/qs_csu/article/details/45114251 我做阿里云账号登录的时候,遇到一个问题,不知道阿里云服务的包名.怎么办?第二种方法可以 ...
- laravel5.5服务提供器
目录 1. 编写服务提供器 1.1 注册方法 register 1.1.1 简单绑定 1.1.2 绑定单例 1.1.3 绑定实例 1.1.4 绑定初始数据 1.2 引导方法 boot 2. 注册服务提 ...
- 机器学习tensorflow框架初试
本文来自网易云社区 作者:汪洋 前言 新手学习可以点击参考Google的教程.开始前,我们先在本地安装好 TensorFlow机器学习框架. 首先我们在本地window下安装好python环境,约定安 ...
- 《Cracking the Coding Interview》——第16章:线程与锁——题目4
2014-04-27 20:06 题目:设计一个类,只有在不产生死锁的时候才分配资源. 解法:不太清楚这个题是要分配何种资源,以何种形式?所以没能动手写个可运行的代码,只是闲扯了几句理论分析. 代码: ...
- SQLite3中dos命令下退出"...>"状态的方法
今天在看Android中SQLite,跟着书上一步一步走,在dos中敲命令时候不小心敲错了,命令行就会突然变成”…>”这样的,本来是”sqlite>”的,然后接下来后面的就没办法在继续操作 ...
- 牛客网暑期ACM多校训练营(第一场):D-Two Graphs
链接:D-Two Graphs 题意:给出图G1和G2,求G2的子图中和G1同构的个数. 题解:只有8个点,暴力枚举G2的点每个排列,让G1映射到G2中,求出同构个数a.同构的G2就是在G1有边的对应 ...
- OZ常见错误解决办法
执行成功 错误信息解决办法 libvirt.libvirtError: Failed to connect socket to '/var/run/libvirt/libvirt-sock': No ...
- 500 OOPS: vsftpd: refusing to run with writable anonymous root
500 OOPS: vsftpd: refusing to run with writable anonymous root 以下就是解决的三个步骤,其中第一步,是我一直没有搞明白的,也是其中的重点: ...