bzoj 4621 Tc605 思想+dp
4621: Tc605
Time Limit: 15 Sec Memory Limit: 128 MB
Submit: 328 Solved: 183
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
3 1 2
Sample Output
HINT
Source
这道题的思想王聿中大神十分牛逼。
https://www.cnblogs.com/wangyurzee7/p/5554380.html
发现对于一个数可以操作的范围是确定的,然后
发现最终的序列中,除了没有操作的序列,如果操作了一定是1-k之间的段数。
f[i][j]表示分成了i段数,是1-j这些数产生的方案数,为什么i为段数,
因为在更新的时候,比如x这个点,可以操作的范围是l--r,那么从f[i-1][l-r]中更新。
用到了前缀和优化降低一维,变成了n^3
#pragma GCC optimize(2)
#pragma G++ optimize(2)
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstdio>
#include<cstring> #define N 507
#define mod 1000000007
#define ll long long
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-;ch=getchar();}
while(isdigit(ch)){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
} int n,K;
int a[N];
int f[N][N],delta[N]; int main()
{
f[][]=;
n=read(),K=read();
for (int i=;i<=n;i++)
a[i]=read();
for (int i=;i<=n;i++)
{
int l,r;
for (l=i;l>&&a[l-]<a[i];l--);
for (r=i;r<n&&a[r+]<a[i];r++);
(f[K][i]+=f[K][i-])%=mod;
for (int k=K-;k>=;k--)
{
delta[l-]=;
for (int j=l;j<=r;j++)delta[j]=(delta[j-]+f[k][j-])%mod;
for (int j=l;j<=r;j++)(f[k+][j]+=delta[j])%=mod;
(f[k][i]+=f[k][i-])%=mod;//什么都不操作
(f[k+][i]+=mod-f[k][i-])%=mod;//自己这个已经加过了
}
}
int ans=;
for (int i=;i<=K;i++)
(ans+=f[i][n])%=mod;
printf("%d\n",ans);
}
bzoj 4621 Tc605 思想+dp的更多相关文章
- BZOJ 4621: Tc605
Description 最初你有一个长度为 N 的数字序列 A.为了方便起见,序列 A 是一个排列. 你可以操作最多 K 次.每一次操作你可以先选定一个 A 的一个子串,然后将这个子串的数字全部变成原 ...
- bzoj 4621: Tc605 动态规划
题解: 一道比较简单的题目 想着想着就把题目记错了..想成了可以把某段区间覆盖为其中一个数 其实是比较简单的 每个点的贡献一定是一个区间(就跟zjoi2018那题一样) 然后问题就变成了给你n个区间让 ...
- BZOJ 4380 [POI2015]Myjnie | DP
链接 BZOJ 4380 题面 有n家洗车店从左往右排成一排,每家店都有一个正整数价格p[i]. 有m个人要来消费,第i个人会驶过第a[i]个开始一直到第b[i]个洗车店,且会选择这些店中最便宜的一个 ...
- [BZOJ 3791] 作业 【DP】
题目链接:BZOJ - 3791 题目分析 一个性质:将一个序列染色 k 次,每次染连续的一段,最多将序列染成 2k-1 段不同的颜色. 那么就可以 DP 了,f[i][j][0|1] 表示到第 i ...
- [BZOJ 2165] 大楼 【DP + 倍增 + 二进制】
题目链接:BZOJ - 2165 题目分析: 这道题我读了题之后就想不出来怎么做,题解也找不到,于是就请教了黄学长,黄学长立刻秒掉了这道题,然后我再看他的题解才写出来..Orz 使用 DP + 倍增 ...
- BZOJ.3425.[POI2013]Polarization(DP 多重背包 二进制优化)
BZOJ 洛谷 最小可到达点对数自然是把一条路径上的边不断反向,也就是黑白染色后都由黑点指向白点.这样答案就是\(n-1\). 最大可到达点对数,容易想到找一个点\(a\),然后将其子树分为两部分\( ...
- BZOJ.5311.贞鱼(DP 决策单调)
题目链接 很容易写出\(O(n^2k)\)的DP方程.然后显然决策点是单调的,于是维护决策点就可以了.. 这个过程看代码或者别的博客吧我不写了..(其实是忘了) 这样复杂度\(O(nk\log n)\ ...
- 【BZOJ 3090】 树形DP
3090: Coci2009 [podjela] Description 有 N 个农民, 他们住在 N 个不同的村子里. 这 N 个村子形成一棵树.每个农民初始时获得 X 的钱.每一次操作, 一个农 ...
- bzoj 1030 fail树dp
dp[i][j][0]代表当前匹配到i号点走了j步且没到过单词节点,1代表到过,直接转移. #include<iostream> #include<cstdio> #inclu ...
随机推荐
- Linux下vim操作的一些使用技巧
以下均为个人在编程时对vim编辑器的一些心得,大神请指点,新手可以看过来 1.多文本编辑 vim -On/-on filename_1 … filename_n 如上所示,在要编辑的文件名前加上“-O ...
- composer安装教程(Linux版)
composer 是款不错的工具,那么如何进行安装composer呢 如果您是linux系统或是mac系统 请先确定是否安装了curl linux安装curl 1 yum install -y c ...
- Android开发——View滑动冲突解决方案
0. 前言 我们在Android开发--事件分发机制详解中深入学习了事件分发机制,为我们解决Android开发中的滑动冲突问题做了初步准备.针对滑动冲突这里给出两种解决方案:外部拦截法和内部拦截法 ...
- laravel5.5http会话机制
1.配置文件 config/session.php 大多数是用file驱动,将session保存在storage/framework/sessions,可以考虑使用redis或者memcached 驱 ...
- Lua1
使用lua进行脚本编程有很多优点: 1 代码体积小 2 执行速度快 3 安全性较高等 4 但是最大的优点是修改后的代码不需要重新编译即可生效,而高级语言的代码经过修改后需要经过重新编译或者解释后才能生 ...
- 浅谈this和static
一.this关键字 一个比较经典的使用: 输出的结果是:12 1.this关键字只能在方法的内部使用,表示对“调用方法的那个对象”的引用,this的用法和其他对象引用并无不同.注意一点:在方法的内部调 ...
- 孤荷凌寒自学python那些事第二天
孤荷凌寒自学python第二天 Python的变量声明 (完整学习过程屏幕记录视频在文末,手写笔记在文末) Python的变量声明不必要显式指定变量类型 甚至也不需要进行显式的声明 比javascri ...
- cookie换肤功能
<div class="selectSkin"> <input id="red" class="themeBtn" typ ...
- leetcode_day03
https://leetcode-cn.com/problems/container-with-most-water/ 题目:盛水最多的容器 给定 n 个非负整数 a1,a2,...,an,每个数代表 ...
- Opencv3.0.0安装包
这个资源是Opencv3.0.0安装包,包括Windows软件包,Android软件包,IOS软件包,还有opencv的源代码:需要的下载吧. 点击下载