luogu2658 GCD(莫比乌斯反演/欧拉函数)
给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对.
1<=N<=10^7
(1)莫比乌斯反演法
发现就是YY的GCD,左转YY的GCD粘过来就行
代码太丑,没开O2 TLE5个点
#include <cstdio>
#include <functional>
using namespace std;
const int fuck = 10000000;
int prime[10000010], tot;
bool vis[10000010];
int mu[10000010], sum[10000010];
int main()
{
mu[1] = 1;
for (int i = 2; i <= fuck; i++)
{
if (vis[i] == false) prime[++tot] = i, mu[i] = -1;
for (int j = 1; j <= tot && i * prime[j] <= fuck; j++)
{
vis[i * prime[j]] = true;
if (i % prime[j] == 0) break;
mu[i * prime[j]] = -mu[i];
}
}
for (int i = 1; i <= tot; i++)
for (int j = 1; j * prime[i] <= fuck; j++)
sum[j * prime[i]] += mu[j];
for (int i = 1; i <= fuck; i++)
sum[i] += sum[i - 1];
// int t; scanf("%d", &t);
// while (t --> 0)
// {
int n, m;
long long ans = 0; //别忘了初始化。。。
scanf("%d", &n), m = n;
if (n > m) {int t = m; m = n; n = t; }
for (int i = 1, j; i <= n; i = j + 1)
{
j = min(n / (n / i), m / (m / i));
ans += (sum[j] - sum[i - 1]) * (long long)(n / i) * (m / i);
}
printf("%lld\n", ans);
// }
return 0;
}
(2)欧拉函数法
对于一个\(p\)我们发现\(\sum_{i=1}^n\sum_{j=1}^n[\gcd(i,j)=p]\)即为\(\sum_{i=1}^{n/p}\sum_{j=1}^{n/p}[\gcd(i,j)=1]\)
左转SDOI仪仗队那题,发现这个式子就是\(2\varphi(\lfloor\frac n p\rfloor)+1\)
线性筛就行
(一个月前的代码
#include <bits/stdc++.h>
using namespace std;
int vis[10000010];
long long phi[10000010];
int prime[1000010], tot, n;
int main()
{
cin >> n;
phi[1] = 1;
for (int i = 2; i <= n; i++)
{
if (vis[i] == 0)
prime[++tot] = i, phi[i] = i - 1;
for (int j = 1; j <= tot && i * prime[j] <= n; j++)
{
vis[i * prime[j]] = true;
if (i % prime[j] == 0)
{
phi[i * prime[j]] = phi[i] * prime[j];
break;
}
phi[i * prime[j]] = phi[i] * (prime[j] - 1);
}
vis[i] ^= 1;
vis[i] += vis[i - 1];
phi[i] += phi[i - 1];
}
long long ans = 0;
for (int i = 1; i <= tot; i++)
ans += 2 * phi[n / prime[i]] - 1;
cout << ans << endl;
return 0;
}
luogu2658 GCD(莫比乌斯反演/欧拉函数)的更多相关文章
- $BZOJ$2818 $gcd$ 莫比乌斯反演/欧拉函数
正解:莫比乌斯反演/欧拉函数 解题报告: 传送门$QwQ$ 一步非常显然的变形,原式=$\sum_{d=1,d\in prim}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd ...
- [luogu P2586] GCD 解题报告 (莫比乌斯反演|欧拉函数)
题目链接:https://www.luogu.org/problemnew/show/P2568#sub 题目大意: 计算$\sum_{x=1}^n\sum_{y=1}^n [gcd(x,y)==p ...
- Bzoj 2818: Gcd 莫比乌斯,分块,欧拉函数,线性筛
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 3241 Solved: 1437[Submit][Status][Discuss ...
- 洛谷 - P1390 - 公约数的和 - 莫比乌斯反演 - 欧拉函数
https://www.luogu.org/problemnew/show/P1390 求 $\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m} gcd(i,j) $ ...
- BZOJ2005:[NOI2010]能量采集(莫比乌斯反演,欧拉函数)
Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...
- HDU 6390 GuGuFishtion(莫比乌斯反演 + 欧拉函数性质 + 积性函数)题解
题意: 给定\(n,m,p\),求 \[\sum_{a=1}^n\sum_{b=1}^m\frac{\varphi(ab)}{\varphi(a)\varphi(b)}\mod p \] 思路: 由欧 ...
- BZOJ4804 欧拉心算(莫比乌斯反演+欧拉函数+线性筛)
一通套路后得Σφ(d)μ(D/d)⌊n/D⌋2.显然整除分块,问题在于怎么快速计算φ和μ的狄利克雷卷积.积性函数的卷积还是积性函数,那么线性筛即可.因为μ(pc)=0 (c>=2),所以f(pc ...
- BZOJ.2705.[SDOI2012]Longge的问题(莫比乌斯反演 欧拉函数)
题目链接 \(Description\) 求\[\sum_{i=1}^n\gcd(i,n)\] \(Solution\) \[ \begin{aligned} \sum_{i=1}^n\gcd(i,n ...
- GCD nyoj 1007 (欧拉函数+欧几里得)
GCD nyoj 1007 (欧拉函数+欧几里得) GCD 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 The greatest common divisor ...
随机推荐
- Debian7 apt源设置
刚装完系统时是没有 apt-spy 的,这时候我们可以暂时先找个可用的源代替,如(写在 /etc/apt/sources.list 中): deb http://http.us.debian.org/ ...
- 微信开发准备(二)--springmvc+mybatis项目结构的搭建
转自:http://www.cuiyongzhi.com/post/34.html 前面一篇有说道如何在MyEclipse中搭建maven项目,这里将继续介绍如何在搭建好的基础maven项目中引入我们 ...
- Enumeration与Iterator的对比
Enumeration与Iterator的对比 Enumeration 接口 Iterator 接口 参数的含义 枚举类型 迭代器元素类型 所在包 java.util 父类 无 子类 StringTo ...
- LINUX oracle dbca无法启动
LINUX操作系统中执行DBCA无法启动 方法:执行以下命令后再执行DBCA xhost +
- php异步执行函数
1.在unix系统中,使用popen和pclose可以创建管道(通信途径)来连接到其他程序. 2.能够执行服务器命令的php函数有: exec(commond,$output) 接收一个命令,把得 ...
- Mysql学习—查看表结构、修改和删除数据表
原文出自:http://blog.csdn.net/junjieguo/article/details/7668775 查看表结构 查看表结构可以用语句DESCRIBE或SHOW CREATE TAB ...
- REST API (更新文档)
Elasticsearch的更新文档API准许通过脚本操作来更新文档.更新操作从索引中获取文档,执行脚本,然后获得返回结果.它使用版本号来控制文档获取或者重建索引. 我们新建一个文档: 请求:PUT ...
- ES6中变量的解析赋值的用途
变量的解构赋值用途很多. (1)交换变量的值 let x = 1; let y = 2; [x, y] = [y, x]; 上面代码交换变量x和y的值,这样的写法不仅简洁,而且易读,语义非常清晰. ( ...
- SpringJdbc 【springjdbc的使用方法】
1 什么是springjdbc spring对jdbc的封装 2 使用SpringJdbc的编程步骤 2.1 导包 spring-jdbc : springjdbc的包 mysql : MySQL的驱 ...
- php学习笔记-关联数组
传统的数组定义方法如下: <?php $names[0]= 'chinese'; $names[1]= 'math'; $names[2]= 'english'; echo $names[2]; ...