luogu2658 GCD(莫比乌斯反演/欧拉函数)
给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对.
1<=N<=10^7
(1)莫比乌斯反演法
发现就是YY的GCD,左转YY的GCD粘过来就行
代码太丑,没开O2 TLE5个点
#include <cstdio>
#include <functional>
using namespace std;
const int fuck = 10000000;
int prime[10000010], tot;
bool vis[10000010];
int mu[10000010], sum[10000010];
int main()
{
mu[1] = 1;
for (int i = 2; i <= fuck; i++)
{
if (vis[i] == false) prime[++tot] = i, mu[i] = -1;
for (int j = 1; j <= tot && i * prime[j] <= fuck; j++)
{
vis[i * prime[j]] = true;
if (i % prime[j] == 0) break;
mu[i * prime[j]] = -mu[i];
}
}
for (int i = 1; i <= tot; i++)
for (int j = 1; j * prime[i] <= fuck; j++)
sum[j * prime[i]] += mu[j];
for (int i = 1; i <= fuck; i++)
sum[i] += sum[i - 1];
// int t; scanf("%d", &t);
// while (t --> 0)
// {
int n, m;
long long ans = 0; //别忘了初始化。。。
scanf("%d", &n), m = n;
if (n > m) {int t = m; m = n; n = t; }
for (int i = 1, j; i <= n; i = j + 1)
{
j = min(n / (n / i), m / (m / i));
ans += (sum[j] - sum[i - 1]) * (long long)(n / i) * (m / i);
}
printf("%lld\n", ans);
// }
return 0;
}
(2)欧拉函数法
对于一个\(p\)我们发现\(\sum_{i=1}^n\sum_{j=1}^n[\gcd(i,j)=p]\)即为\(\sum_{i=1}^{n/p}\sum_{j=1}^{n/p}[\gcd(i,j)=1]\)
左转SDOI仪仗队那题,发现这个式子就是\(2\varphi(\lfloor\frac n p\rfloor)+1\)
线性筛就行
(一个月前的代码
#include <bits/stdc++.h>
using namespace std;
int vis[10000010];
long long phi[10000010];
int prime[1000010], tot, n;
int main()
{
cin >> n;
phi[1] = 1;
for (int i = 2; i <= n; i++)
{
if (vis[i] == 0)
prime[++tot] = i, phi[i] = i - 1;
for (int j = 1; j <= tot && i * prime[j] <= n; j++)
{
vis[i * prime[j]] = true;
if (i % prime[j] == 0)
{
phi[i * prime[j]] = phi[i] * prime[j];
break;
}
phi[i * prime[j]] = phi[i] * (prime[j] - 1);
}
vis[i] ^= 1;
vis[i] += vis[i - 1];
phi[i] += phi[i - 1];
}
long long ans = 0;
for (int i = 1; i <= tot; i++)
ans += 2 * phi[n / prime[i]] - 1;
cout << ans << endl;
return 0;
}
luogu2658 GCD(莫比乌斯反演/欧拉函数)的更多相关文章
- $BZOJ$2818 $gcd$ 莫比乌斯反演/欧拉函数
正解:莫比乌斯反演/欧拉函数 解题报告: 传送门$QwQ$ 一步非常显然的变形,原式=$\sum_{d=1,d\in prim}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd ...
- [luogu P2586] GCD 解题报告 (莫比乌斯反演|欧拉函数)
题目链接:https://www.luogu.org/problemnew/show/P2568#sub 题目大意: 计算$\sum_{x=1}^n\sum_{y=1}^n [gcd(x,y)==p ...
- Bzoj 2818: Gcd 莫比乌斯,分块,欧拉函数,线性筛
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 3241 Solved: 1437[Submit][Status][Discuss ...
- 洛谷 - P1390 - 公约数的和 - 莫比乌斯反演 - 欧拉函数
https://www.luogu.org/problemnew/show/P1390 求 $\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m} gcd(i,j) $ ...
- BZOJ2005:[NOI2010]能量采集(莫比乌斯反演,欧拉函数)
Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...
- HDU 6390 GuGuFishtion(莫比乌斯反演 + 欧拉函数性质 + 积性函数)题解
题意: 给定\(n,m,p\),求 \[\sum_{a=1}^n\sum_{b=1}^m\frac{\varphi(ab)}{\varphi(a)\varphi(b)}\mod p \] 思路: 由欧 ...
- BZOJ4804 欧拉心算(莫比乌斯反演+欧拉函数+线性筛)
一通套路后得Σφ(d)μ(D/d)⌊n/D⌋2.显然整除分块,问题在于怎么快速计算φ和μ的狄利克雷卷积.积性函数的卷积还是积性函数,那么线性筛即可.因为μ(pc)=0 (c>=2),所以f(pc ...
- BZOJ.2705.[SDOI2012]Longge的问题(莫比乌斯反演 欧拉函数)
题目链接 \(Description\) 求\[\sum_{i=1}^n\gcd(i,n)\] \(Solution\) \[ \begin{aligned} \sum_{i=1}^n\gcd(i,n ...
- GCD nyoj 1007 (欧拉函数+欧几里得)
GCD nyoj 1007 (欧拉函数+欧几里得) GCD 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 The greatest common divisor ...
随机推荐
- 函数指针的应用学习Demo
学习函数指针的应用 ,简单demo #include "stdafx.h" #include "SubClass.h"; //函数指针 typedef int ...
- How to recover destroyed ZFS storage pools
root@sol11ai:~# zpool status tank pool: tank state: ONLINE scan: resilvered 91K in 0h0m with 0 e ...
- 10-23C#基础--结构体
结构体: 1.定义:封装小型相关变量组,里面可以放一系列的变量: 就是一个变量组,将一组变量放在一起,结构体一般定义在Main函数上面,位于Class下面,作为一个类:一般情况Struct定义在Mai ...
- flask 电影系统(2)
标签,电影,上映预告数据模型设计 标签数据类型 id:编号 name:标题 movies:电影外键关联 addtime:创建时间 定义电影数据模型 id:编号 title:电影标题 url:电影地址 ...
- 安装zabbix-agent报错 Error: failure: repodata/primary.xml.gz from zabbix: [Errno 256] No more mirrors to try.
安装zabbix-agent报错 yum install -y zabbix-agent Loaded plugins: fastestmirror, refresh-packagekit, secu ...
- Pandoc+markdown生成slides
Pandoc+markdown生成slides 参考:http://blog.csdn.net/pizi0475/article/details/50955900 1.安装 http://pandoc ...
- matlab学习笔记(3)
数据分析: 多项式: 多项式表示:p = [1 2 3 0]; //表示 1*x^3+2*x^2+3*x^1+0 ,系数从高次向低次项,0系数不能省略. roots函数:求解多项式的根.roots(p ...
- [Python Study Notes]七彩散点图绘制
''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' ...
- Oracle merge into 语句进行insert或者update操作,如果存在就update,如果不存在就insert
merge into的形式: MERGE INTO [target-table] A USING [source-table sql] B ON([conditional expression] ...
- JVM实用参数(三)打印所有XX参数及值
JVM实用参数(三)打印所有XX参数及值 原文地址:https://blog.codecentric.de/en/2012/07/useful-jvm-flags-part-3-printing-al ...