PS1:如果单纯为做出这道题那么这个代价是O(nlgn),通过排序就可以了。 这里讨论的是O(n)的算法。那么来分析一下这个算法是如何做到O(n)的,算了不分析了,这个推到看起来太麻烦了。其实我想知道的只是结论而已,想感叹的也是partition真是特别好用啊!!!!

代码:

 #include<iostream>
#include<ctime> using namespace std; int size = ; void Swap(int &a, int &b)
{
int c = a;
a = b;
b = c;
} void RandomizedSwap(int a[], int p, int r)
{
srand((int)time());
int t = rand() % (r - p + )+p;
Swap(a[p], a[r]);
} int RandomizedPartition(int a[], int p, int r)
{
RandomizedSwap(a, p, r);
int x = a[r];
int i = p - ;
for (int j = p; j < size - ; j++)
{
if (a[j] < x)
{
i = i + ;
Swap(a[j], a[i]);
}
}
Swap(a[i+], a[r]);
return i + ;
} int RandomizedSelect(int a[], int p, int r, int i)
{
if (p == r)
return a[p];
else
{
int q = RandomizedPartition(a, p, r);
if (q -p+ == i)
return a[q];
else
{
if (q -p + < i)
return RandomizedSelect(a, q + , r, i-q + p-);
else
return RandomizedSelect(a, p, q - , i);
}
}
} int main()
{
int a[] = { , , , , , , , , , };
cout << RandomizedSelect(a, , , ) << endl;
}

算法导论 寻找第i小元素 9.2的更多相关文章

  1. 减治算法之寻找第K小元素问题

    一.问题描写叙述 给定一个整数数列,寻找其按递增排序后的第k个位置上的元素. 二.问题分析 借助类似快排思想实现pation函数.再利用递归思想寻找k位置. 三.算法代码 public static ...

  2. 基于visual Studio2013解决算法导论之015第二小元素

     题目 查找第二小元素 解决代码及点评 #include <stdio.h> #include <stdlib.h> #include <malloc.h> ...

  3. 寻找第K小元素

    要在一个序列里找出第K小元素,可以用排序算法,然后再找.可以证明,排序算法的上界为O(nlogn). 在这里,给出两种可以在线性时间内找出第K小元素的方法. 方法1: (1) 选定一个比较小的阈值(如 ...

  4. 【算法导论】第i小的元素

    第i小的元素       时间复杂度:O(n). 基本思想:和快速排序的思想相似,也是对数组进行递归划分,但是有所差别的是,快速排序会递归处理划分的两边,而随机化的选择算法只选择一边.       具 ...

  5. 【算法31】寻找数组的主元素(Majority Element)

    题外话 最近有些网友来信问我博客怎么不更新了,是不是不刷题了,真是惭愧啊,题还是在刷的,不过刷题的频率没以前高了,看完<算法导论>后感觉网上很多讨论的题目其实在导论中都已经有非常好的算法以 ...

  6. 算法导论-顺序统计-快速求第i小的元素

    目录 1.问题的引出-求第i个顺序统计量 2.方法一:以期望线性时间做选择 3.方法二(改进):最坏情况线性时间的选择 4.完整测试代码(c++) 5.参考资料 内容 1.问题的引出-求第i个顺序统计 ...

  7. 基于visual Studio2013解决算法导论之017查找第n小元素

     题目 查找第n小元素 解决代码及点评 #include <stdio.h> #include <stdlib.h> #include <malloc.h> ...

  8. 算法导论学习之线性时间求第k小元素+堆思想求前k大元素

    对于曾经,假设要我求第k小元素.或者是求前k大元素,我可能会将元素先排序,然后就直接求出来了,可是如今有了更好的思路. 一.线性时间内求第k小元素 这个算法又是一个基于分治思想的算法. 其详细的分治思 ...

  9. 快速排序以及第k小元素的线性选择算法

    简要介绍下快速排序的思想:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此 ...

随机推荐

  1. Redis底层探秘(六):对象多态及回收

    本篇是我们redis系列的最后一篇,整个系列其实是我学习<redis设计与实现>的笔记,这本书感觉不错,推荐使用redis的小伙伴都可以看看. 整个系列的文字都比较干,很多数据结构和C语言 ...

  2. webpack 配置简单说几句 ?

    前言 这几天在准备一个单页面应用, 准备试试webpack神器,在准备webpack下的知识点,顺便记录下一些使用的心得. webpack 的配置说明 在近来的前端开发中,业务逻辑复杂化,层次多样化, ...

  3. 配置文件的继承与覆盖: Machine.config / Web.config /子目录 Web.config

    C#有三种级别的配置文件: 机器级别 machine.config 在 C:\Windows\Microsoft.NET\Framework64\v4.0.30319\Config\machine.c ...

  4. HTML5通信

    跨文档消息传输 HTML5中提供了在网页文档之间互相接收与发送信息的功能.使用这个功能只要获取到网页所在窗口对象的实例,无论是否同源都可以实现跨域通信.经常用于不同frame之间的通信. 当我们想要接 ...

  5. install命令和cp命令的区别

    基本上,在Makefile里会用到install,其他地方会用cp命令. 它们完成同样的任务——拷贝文件,它们之间的区别主要如下: 1.最重要的一点,如果目标文件存在,cp会先清空文件后往里写入新文件 ...

  6. 在云服务器上体验Docker

    1. 添加Docker repository key sh -c "wget -qO- https://get.docker.io/gpg | apt-key add -" 2. ...

  7. Plist文件存储

    一.Plilst存储简介 (1)只能储存NSData.NSNumber.NSDictionary.NSString.NSDate.NSArray.BOOL等数据类型,如果需要存储其他NSObject类 ...

  8. openGL一些概念02

    着色器程序 着色器程序对象(Shader Program Object)是多个着色器合并之后并最终链接完成的版本. 如果要使用刚才编译的着色器我们必须把他们链接为一个着色器程序对象,然后在渲染对象的时 ...

  9. Android 图片相关

    从asset文件夹中读取Bitmap //从asset文件夹中取文件 private Bitmap getImageFromAssetFile(String fileName){ Bitmap ima ...

  10. 每天一道算法题(12)——和为n的连续正数序列或者随机数

    题目:输入一个正数n,输出所有和为n 连续正数序列.例如输入15,由于1+2+3+4+5=4+5+6=7+8=15,所以输出3 个连续序列1-5.4-6 和7-8. 1.思路 尊崇以下策略: (1)对 ...