一、基础理解

  • Hard Margin SVM 和 Soft Margin SVM 都是解决线性分类问题,无论是线性可分的问题,还是线性不可分的问题;
  • 和 kNN 算法一样,使用 SVM 算法前,要对数据做标准化处理;
  • 原因:SVM 算法中设计到计算 Margin 距离,如果数据点在不同的维度上的量纲不同,会使得距离的计算有问题;
  • 例如:样本的两种特征,如果相差太大,使用 SVM 经过计算得到的决策边界几乎为一条水平的直线——因为两种特征的数据量纲相差太大,水平方向的距离可以忽略,因此,得到的最大的 Margin 就是两条虚线的垂直距离;
  • 只有不同特征的数据的量纲一样时,得到的决策边界才没有问题;

二、例

 1)导入并绘制数据集

  • import numpy as np
    import matplotlib.pyplot as plt
    from sklearn import datasets iris = datasets.load_iris()
    X = iris.data
    y = iris.target
    X = X[y<2, :2]
    y = y[y<2] plt.scatter(X[y==0, 0], X[y==0, 1], color='red')
    plt.scatter(X[y==1, 0], X[y==1, 1], color='blue')
    plt.show()

 2)LinearSVC(线性 SVM 算法)

  • LinearSVC:该算法使用了支撑向量机的思想;
  • 数据标准化
    from sklearn.preprocessing import StandardScaler
    
    standardScaler = StandardScaler()
    standardScaler.fit(X)
    X_standard = standardScaler.transform(X)
  • 调用 LinearSVC
    from sklearn.svm import LinearSVC
    
    svc = LinearSVC(C=10**9)
    svc.fit(X_standard, y)
  • 导入绘制决策边界的函数,并绘制模型决策边界:Hard Margin SVM 思想
    def plot_decision_boundary(model, axis):
    
        x0, x1 = np.meshgrid(
    np.linspace(axis[0], axis[1], int((axis[1]-axis[0])*100)).reshape(-1,1),
    np.linspace(axis[2], axis[3], int((axis[3]-axis[2])*100)).reshape(-1,1)
    )
    X_new = np.c_[x0.ravel(), x1.ravel()] y_predict = model.predict(X_new)
    zz = y_predict.reshape(x0.shape) from matplotlib.colors import ListedColormap
    custom_cmap = ListedColormap(['#EF9A9A','#FFF59D','#90CAF9']) plt.contourf(x0, x1, zz, linewidth=5, cmap=custom_cmap) plot_decision_boundary(svc, axis=[-3, 3, -3, 3])
    plt.scatter(X_standard[y==0, 0], X_standard[y==0, 1], color='red')
    plt.scatter(X_standard[y==1, 0], X_standard[y==1, 1], color='blue')
    plt.show()

  • 绘制决策边界:Soft Margin SVM 思想

    svc2 = LinearSVC(C=0.01)
    svc2.fit(X_standard, y) plot_decision_boundary(svc2, axis=[-3, 3, -3, 3])
    plt.scatter(X_standard[y==0, 0], X_standard[y==0, 1], color='red')
    plt.scatter(X_standard[y==1, 0], X_standard[y==1, 1], color='blue')
    plt.show()

 3)绘制支撑向量所在的直线

  • svc.coef_:算法模型的系数,有两个值,因为样本有两种特征,每个特征对应一个系数;
  • 系数:特征与样本分类结果的关系系数;
  • svc.intercept_:模型的截距,一维向量,只有一个数,因为只有一条直线;
  • 系数:w = svc.coef_
  • 截距:b = svc.intercept_
  • 决策边界直线方程:w[0] * x0 + w[1] * x1 + b = 0
  • 支撑向量直线方程:w[0] * x0 + w[1] * x1 + b = ±1
  • 变形
  1. 决策边界:x1 = -w[0]/w[1] * x0 - b/w[1]
  2. 支撑向量:x1 = -w[0]/w[1] * x0 - b/w[1] ± 1/w[1]
  • 修改绘图函数

    # 绘制:决策边界、支撑向量所在的直线
    def plot_svc_decision_boundary(model, axis): x0, x1 = np.meshgrid(
    np.linspace(axis[0], axis[1], int((axis[1]-axis[0])*100)).reshape(-1,1),
    np.linspace(axis[2], axis[3], int((axis[3]-axis[2])*100)).reshape(-1,1)
    )
    X_new = np.c_[x0.ravel(), x1.ravel()] y_predict = model.predict(X_new)
    zz = y_predict.reshape(x0.shape) from matplotlib.colors import ListedColormap
    custom_cmap = ListedColormap(['#EF9A9A','#FFF59D','#90CAF9']) plt.contourf(x0, x1, zz, linewidth=5, cmap=custom_cmap) w = model.coef_[0]
    b = model.intercept_[0] plot_x = np.linspace(axis[0], axis[1], 200)
    up_y = -w[0]/w[1] * plot_x - b/w[1] + 1/w[1]
    down_y = -w[0]/w[1] * plot_x - b/w[1] - 1/w[1] # 将 plot_x 与 up_y、down_y 的关系以折线图的形式表示出来
    # 此处有一个问题:up_y和down_y的结果可能超过了 axis 中 y 坐标的范围,需要添加一个过滤条件:
    # up_index:布尔向量,元素 True 表示,up_y 中的满足 axis 中的 y 的范围的值在 up_y 中的引索;
    # down_index:布尔向量,同理 up_index;
    up_index = (up_y >= axis[2]) & (up_y <= axis[3])
    down_index = (down_y >= axis[2]) & (down_y <= axis[3])
    plt.plot(plot_x[up_index], up_y[up_index], color='black')
    plt.plot(plot_x[down_index], down_y[down_index], color='black')
  • 绘图:Hard Margin SVM

    plot_svc_decision_boundary(svc, axis=[-3, 3, -3, 3])
    plt.scatter(X_standard[y==0, 0], X_standard[y==0, 1], color='red')
    plt.scatter(X_standard[y==1, 0], X_standard[y==1, 1], color='blue')
    plt.show()

  • 绘图:Soft Margin SVM

    plot_svc_decision_boundary(svc2, axis=[-3, 3, -3, 3])
    plt.scatter(X_standard[y==0, 0], X_standard[y==0, 1], color='red')
    plt.scatter(X_standard[y==1, 0], X_standard[y==1, 1], color='blue')
    plt.show()

  • 现象:Margin 非常大,中间容错了很多样本点;
  • 原因:C 超参数过小,模型容错空间过大;
  • 方案:调参;

机器学习:SVM(scikit-learn 中的 SVM:LinearSVC)的更多相关文章

  1. 机器学习框架Scikit Learn的学习

    一   安装 安装pip 代码如下:# wget "https://pypi.python.org/packages/source/p/pip/pip-1.5.4.tar.gz#md5=83 ...

  2. (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探

    一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...

  3. (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探

    目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...

  4. Scikit Learn: 在python中机器学习

    转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...

  5. 100天搞定机器学习|Day16 通过内核技巧实现SVM

    前情回顾 机器学习100天|Day1数据预处理100天搞定机器学习|Day2简单线性回归分析100天搞定机器学习|Day3多元线性回归100天搞定机器学习|Day4-6 逻辑回归100天搞定机器学习| ...

  6. 机器学习基石--学习笔记01--linear hard SVM

    背景 支持向量机(SVM)背后的数学知识比较复杂,之前尝试过在网上搜索一些资料自学,但是效果不佳.所以,在我的数据挖掘工具箱中,一直不会使用SVM这个利器.最近,台大林轩田老师在Coursera上的机 ...

  7. OpenCV中的SVM參数优化

    SVM(支持向量机)是机器学习算法里用得最多的一种算法.SVM最经常使用的是用于分类,只是SVM也能够用于回归,我的实验中就是用SVM来实现SVR(支持向量回归). 对于功能这么强的算法,opencv ...

  8. sklearn中的SVM

    scikit-learn中SVM的算法库分为两类,一类是分类的算法库,包括SVC, NuSVC,和LinearSVC 3个类.另一类是回归算法库,包括SVR, NuSVR,和LinearSVR 3个类 ...

  9. OpenCV中的SVM参数优化

    OpenCV中的SVM参数优化 svm参数优化opencv SVMSVR参数优化CvSVMopencv CvSVM        SVM(支持向量机)是机器学习算法里用得最多的一种算法.SVM最常用的 ...

随机推荐

  1. 服务器Windows 2008 R2 安装SQL 2008 R2

    在站点下载 SQL 2008 R2 在安装数据库之前首先安装IIS和.NET 3.5 解压  找到运行程序 (这里需要修改路径,数据库一般不要安装在系统盘) (选择任何一个都可以,这里选择system ...

  2. springcloud-Api网关服务Zuul

    springcloud项目例子:链接:https://pan.baidu.com/s/1O1PKrdvrq5c8sQUb7dQ5Pg 密码:ynir 1.由来: 如果我的微服务中有很多个独立服务都要对 ...

  3. vim 乱码问题的方法参考

    linux 中设置当前用户的系统默认编码为 UTF-8 格式解决 vim 乱码问题的方法参考  任侠  2013-05-02 11:58  电脑基础  抢沙发  13,732 views  在使用 l ...

  4. elasticsearch中如何手动控制全文检索结果的精准度

    1.为帖子数据增加标题字段 POST /forum/article/_bulk{ "update": { "_id": "1"} }{ &q ...

  5. Vue v-if条件渲染

    1.简单的v-if指令,代码如下 <!DOCTYPE html> <html> <head lang="en"> <meta charse ...

  6. JavaWeb中的中文编码问题

    一.为什么要编码? 1.在计算机中存储信息的最小单元是1字节,即8个bit,所以能表示的字符范围是0~255个. 2.人类要表示的符号太多,无法用1个字节来完全表示. 这就是矛盾,要解决这个矛盾,就出 ...

  7. ansible安装nginx

    ansible安装nginx(实现回滚发布功能:下一篇博客.没想到写长了) 一.准备工作 1.准备两台机器 sai: 192.168.131.132  ——> ansible的服务端 luojy ...

  8. hdu 1220 容斥

    http://acm.hdu.edu.cn/showproblem.php?pid=1220 Cube Time Limit: 2000/1000 MS (Java/Others)    Memory ...

  9. uva 103 经典DAG变形

    https://vjudge.net/problem/UVA-103 也是一个经典的DAG模型,因为书上的翻译和原文不照导致WA两发= = 对于同一维度的两个箱子A,B,A可以嵌套在B中的一个充分条件 ...

  10. IDEA 新建.vue格式的文件

    1.Ctrl+Alt+S 2. <template> <div> {{msg}} </div> </template> <style> bo ...