一、基础理解

  • Hard Margin SVM 和 Soft Margin SVM 都是解决线性分类问题,无论是线性可分的问题,还是线性不可分的问题;
  • 和 kNN 算法一样,使用 SVM 算法前,要对数据做标准化处理;
  • 原因:SVM 算法中设计到计算 Margin 距离,如果数据点在不同的维度上的量纲不同,会使得距离的计算有问题;
  • 例如:样本的两种特征,如果相差太大,使用 SVM 经过计算得到的决策边界几乎为一条水平的直线——因为两种特征的数据量纲相差太大,水平方向的距离可以忽略,因此,得到的最大的 Margin 就是两条虚线的垂直距离;
  • 只有不同特征的数据的量纲一样时,得到的决策边界才没有问题;

二、例

 1)导入并绘制数据集

  • import numpy as np
    import matplotlib.pyplot as plt
    from sklearn import datasets iris = datasets.load_iris()
    X = iris.data
    y = iris.target
    X = X[y<2, :2]
    y = y[y<2] plt.scatter(X[y==0, 0], X[y==0, 1], color='red')
    plt.scatter(X[y==1, 0], X[y==1, 1], color='blue')
    plt.show()

 2)LinearSVC(线性 SVM 算法)

  • LinearSVC:该算法使用了支撑向量机的思想;
  • 数据标准化
    from sklearn.preprocessing import StandardScaler
    
    standardScaler = StandardScaler()
    standardScaler.fit(X)
    X_standard = standardScaler.transform(X)
  • 调用 LinearSVC
    from sklearn.svm import LinearSVC
    
    svc = LinearSVC(C=10**9)
    svc.fit(X_standard, y)
  • 导入绘制决策边界的函数,并绘制模型决策边界:Hard Margin SVM 思想
    def plot_decision_boundary(model, axis):
    
        x0, x1 = np.meshgrid(
    np.linspace(axis[0], axis[1], int((axis[1]-axis[0])*100)).reshape(-1,1),
    np.linspace(axis[2], axis[3], int((axis[3]-axis[2])*100)).reshape(-1,1)
    )
    X_new = np.c_[x0.ravel(), x1.ravel()] y_predict = model.predict(X_new)
    zz = y_predict.reshape(x0.shape) from matplotlib.colors import ListedColormap
    custom_cmap = ListedColormap(['#EF9A9A','#FFF59D','#90CAF9']) plt.contourf(x0, x1, zz, linewidth=5, cmap=custom_cmap) plot_decision_boundary(svc, axis=[-3, 3, -3, 3])
    plt.scatter(X_standard[y==0, 0], X_standard[y==0, 1], color='red')
    plt.scatter(X_standard[y==1, 0], X_standard[y==1, 1], color='blue')
    plt.show()

  • 绘制决策边界:Soft Margin SVM 思想

    svc2 = LinearSVC(C=0.01)
    svc2.fit(X_standard, y) plot_decision_boundary(svc2, axis=[-3, 3, -3, 3])
    plt.scatter(X_standard[y==0, 0], X_standard[y==0, 1], color='red')
    plt.scatter(X_standard[y==1, 0], X_standard[y==1, 1], color='blue')
    plt.show()

 3)绘制支撑向量所在的直线

  • svc.coef_:算法模型的系数,有两个值,因为样本有两种特征,每个特征对应一个系数;
  • 系数:特征与样本分类结果的关系系数;
  • svc.intercept_:模型的截距,一维向量,只有一个数,因为只有一条直线;
  • 系数:w = svc.coef_
  • 截距:b = svc.intercept_
  • 决策边界直线方程:w[0] * x0 + w[1] * x1 + b = 0
  • 支撑向量直线方程:w[0] * x0 + w[1] * x1 + b = ±1
  • 变形
  1. 决策边界:x1 = -w[0]/w[1] * x0 - b/w[1]
  2. 支撑向量:x1 = -w[0]/w[1] * x0 - b/w[1] ± 1/w[1]
  • 修改绘图函数

    # 绘制:决策边界、支撑向量所在的直线
    def plot_svc_decision_boundary(model, axis): x0, x1 = np.meshgrid(
    np.linspace(axis[0], axis[1], int((axis[1]-axis[0])*100)).reshape(-1,1),
    np.linspace(axis[2], axis[3], int((axis[3]-axis[2])*100)).reshape(-1,1)
    )
    X_new = np.c_[x0.ravel(), x1.ravel()] y_predict = model.predict(X_new)
    zz = y_predict.reshape(x0.shape) from matplotlib.colors import ListedColormap
    custom_cmap = ListedColormap(['#EF9A9A','#FFF59D','#90CAF9']) plt.contourf(x0, x1, zz, linewidth=5, cmap=custom_cmap) w = model.coef_[0]
    b = model.intercept_[0] plot_x = np.linspace(axis[0], axis[1], 200)
    up_y = -w[0]/w[1] * plot_x - b/w[1] + 1/w[1]
    down_y = -w[0]/w[1] * plot_x - b/w[1] - 1/w[1] # 将 plot_x 与 up_y、down_y 的关系以折线图的形式表示出来
    # 此处有一个问题:up_y和down_y的结果可能超过了 axis 中 y 坐标的范围,需要添加一个过滤条件:
    # up_index:布尔向量,元素 True 表示,up_y 中的满足 axis 中的 y 的范围的值在 up_y 中的引索;
    # down_index:布尔向量,同理 up_index;
    up_index = (up_y >= axis[2]) & (up_y <= axis[3])
    down_index = (down_y >= axis[2]) & (down_y <= axis[3])
    plt.plot(plot_x[up_index], up_y[up_index], color='black')
    plt.plot(plot_x[down_index], down_y[down_index], color='black')
  • 绘图:Hard Margin SVM

    plot_svc_decision_boundary(svc, axis=[-3, 3, -3, 3])
    plt.scatter(X_standard[y==0, 0], X_standard[y==0, 1], color='red')
    plt.scatter(X_standard[y==1, 0], X_standard[y==1, 1], color='blue')
    plt.show()

  • 绘图:Soft Margin SVM

    plot_svc_decision_boundary(svc2, axis=[-3, 3, -3, 3])
    plt.scatter(X_standard[y==0, 0], X_standard[y==0, 1], color='red')
    plt.scatter(X_standard[y==1, 0], X_standard[y==1, 1], color='blue')
    plt.show()

  • 现象:Margin 非常大,中间容错了很多样本点;
  • 原因:C 超参数过小,模型容错空间过大;
  • 方案:调参;

机器学习:SVM(scikit-learn 中的 SVM:LinearSVC)的更多相关文章

  1. 机器学习框架Scikit Learn的学习

    一   安装 安装pip 代码如下:# wget "https://pypi.python.org/packages/source/p/pip/pip-1.5.4.tar.gz#md5=83 ...

  2. (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探

    一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...

  3. (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探

    目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...

  4. Scikit Learn: 在python中机器学习

    转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...

  5. 100天搞定机器学习|Day16 通过内核技巧实现SVM

    前情回顾 机器学习100天|Day1数据预处理100天搞定机器学习|Day2简单线性回归分析100天搞定机器学习|Day3多元线性回归100天搞定机器学习|Day4-6 逻辑回归100天搞定机器学习| ...

  6. 机器学习基石--学习笔记01--linear hard SVM

    背景 支持向量机(SVM)背后的数学知识比较复杂,之前尝试过在网上搜索一些资料自学,但是效果不佳.所以,在我的数据挖掘工具箱中,一直不会使用SVM这个利器.最近,台大林轩田老师在Coursera上的机 ...

  7. OpenCV中的SVM參数优化

    SVM(支持向量机)是机器学习算法里用得最多的一种算法.SVM最经常使用的是用于分类,只是SVM也能够用于回归,我的实验中就是用SVM来实现SVR(支持向量回归). 对于功能这么强的算法,opencv ...

  8. sklearn中的SVM

    scikit-learn中SVM的算法库分为两类,一类是分类的算法库,包括SVC, NuSVC,和LinearSVC 3个类.另一类是回归算法库,包括SVR, NuSVR,和LinearSVR 3个类 ...

  9. OpenCV中的SVM参数优化

    OpenCV中的SVM参数优化 svm参数优化opencv SVMSVR参数优化CvSVMopencv CvSVM        SVM(支持向量机)是机器学习算法里用得最多的一种算法.SVM最常用的 ...

随机推荐

  1. k-近邻算法 标签分类

    k-近邻算法根据特征比较,然后提取样本集中特征最相似数据(最邻近)的分类标签.那么,如何进行比较呢? 怎么判断红色圆点标记的电影所属的类别呢? 如下图所示. 答:距离度量.这个电影分类的例子有2个特征 ...

  2. 斯坦福机器学习视频笔记 Week9 异常检测和高斯混合模型 Anomaly Detection

    异常检测,广泛用于欺诈检测(例如“此信用卡被盗?”). 给定大量的数据点,我们有时可能想要找出哪些与平均值有显着差异. 例如,在制造中,我们可能想要检测缺陷或异常. 我们展示了如何使用高斯分布来建模数 ...

  3. win10系统下载地址

    Win10正式版微软官方原版ISO系统镜像下载: Win10正式版32位简体中文版(含家庭版.专业版) 文件名: cn_windows_10_multiple_editions_x86_dvd_684 ...

  4. 让iOS项目允许使用http协议请求

    苹果官方已经默认不让开发者使用不安全的http通信协议了,而是建议开发者使用安全的https协议.若我们还是需要使用http协议可以这样配置XCode: 1.打开info.plist文件 2.点击加号 ...

  5. Nginx的访问日志配置信息详解

    Nginx的访问日志可以让我们知晓用户的地址,网站的那些部分最受欢迎,以及用户浏览时间等.Nginx会把每个用户的访问日志记录到指定的日志文件中. Nginx主要有两个参数来控制 log_format ...

  6. CCNA 课程 五

    VLSM (可变长子网掩码)也就是子网的划分过程 子网掩码和ip地址相与得到的是IP地址的网络地址(0&1 == 0 : 1&1 == 1) 简单来说就是 IP地址 和 子网掩码 上下 ...

  7. spark总结4 算子问题总结

    官网上最清晰 sc 启动spark时候就已经初始化好了 sc.textFile后 会产生一个rdd spark 的算子分为两类 一类 Transformation  转换 一类 Action  动作 ...

  8. js提示确认删除吗

    <script language="javascript"> function delcfm() { if (!confirm("确认要删除?")) ...

  9. Flume架构及运行机制

    flume 作为 cloudera 开发的实时日志收集系统,受到了业界的认可与广泛应用.Flume 初始的发行版本目前被统称为 Flume OG(original generation),属于 clo ...

  10. webview 最简单的demo

    ) { return; } view.loadUrl(url); }} <!--activity_test.xml> <?xml version="1.0" en ...