题意

题目链接

构造一个\(n * n\)的矩阵,要求任意相邻的两个数\(a,b\),使得\(max(a,b) \% min(a,b) \not = 0\)

Sol

我的思路:

假设\(mod = 1\),那么可以在第一行放2 3 4 5 \(\dots\),第一列同理也这样放

对于任意位置\(i\),一定满足要求的一个数是a[i - 1][j] * a[i][j - 1] / __gcd(a[i - 1][j], a[i][j - 1]) + 1

然而最后的数大到上天啊。。。

标算挺巧妙的,首先把整个图黑白染色,那么同色点之间是互不影响的。

考虑构造\(mod = 1\)的矩阵。

若白点的权值确定了,那么黑点的权值应当是所有相邻白点的\(lcm\)+1,

那所有白点的权值怎么确定呢?

考虑直接用素数填充对于正对角线和负对角线上的每个点分配一个不同的素数

那么任意白点的权值为所在正对角线上的素数 乘 负对角线的素数

这样算出来最大的$a_{ij} = 414556486388264 $,满足要求

不过为啥数组要开1000才能过???


#include<bits/stdc++.h>
#define int long long
using namespace std;
const int MAXN = 1e5 + 10;
int N;
int a[1001][1001], vis[MAXN], prime[MAXN], tot;
void GetPhi() {
vis[1] = 1;
for(int i = 2; i; i++) {
if(!vis[i]) prime[++tot] = i;
if(tot == 1000) break;
for(int j = 1; j <= tot && (i * prime[j] <= 10000); j++) {
vis[i * prime[j]] = 1;
if(!(i % prime[j])) break;
}
}
}
int lcm(int x, int y) {
if(x == 0 || y == 0) return x + y;
return x / __gcd(x, y) * y;
}
main() {
GetPhi();
cin >> N;
if(N == 2) {
printf("4 7\n23 10");
return 0;
}
for(int i = 1; i <= N; i++)
for(int j = 1; j <= N; j++)
if(!((i + j) & 1)) a[i][j] = prime[(i + j) / 2] * prime[N + (i - j) / 2 + (N + 1) / 2];
for(int i = 1; i <= N; i++)
for(int j = 1; j <= N; j++)
if(!a[i][j])
a[i][j] = lcm(lcm(a[i - 1][j], a[i][j - 1]), lcm(a[i][j + 1], a[i + 1][j])) + 1;
for(int i = 1; i <= N; i++, puts(""))
for(int j = 1; j <= N; j++)
cout << a[i][j] << " ";
return 0;
}

agc027D - Modulo Matrix(构造 黑白染色)的更多相关文章

  1. AGC 027D.Modulo Matrix(构造 黑白染色)

    题目链接 \(Description\) 给定\(n\),要求构造一个\(n\times n\)的矩阵,矩阵内的元素两两不同,且任意相邻的两个元素\(x,y\),满足\(\max(x,y)\ \mat ...

  2. AGC027 D - Modulo Matrix 构造

    目录 题目链接 题解 代码 题目链接 AGC027 D - Modulo Matrix 题解 从第左上角第一个点开始染色,相邻不同色,染法唯一 那么一个点的四周与他不同色,我们另这个点比四周都大,那么 ...

  3. AtCoder Grand Contest 027 (AGC017) D - Modulo Matrix 构造

    原文链接https://www.cnblogs.com/zhouzhendong/p/AGC027C.html 题解 首先我们假装 max mod min = 1 然后对着这个构造. 将各自黑白染色, ...

  4. 【AGC018F】Two Trees 构造 黑白染色

    题目描述 有两棵有根树,顶点的编号都是\(1\)~\(n\). 你要给每个点一个权值\(a_i\),使得对于两棵树的所有顶点\(x\),满足\(|x\)的子树的权值和\(|=1\) \(n\leq 1 ...

  5. 「AGC027D」Modulo Matrix

    「AGC027D」Modulo Matrix 传送门 神仙构造题. 首先考虑一个非常自然的思路,我们把棋盘黑白染色后会变成一个二分图,黑色棋子只会与白色棋子相邻. 也就是说,我们可以将二分图的一部随便 ...

  6. 【BZOJ-1976】能量魔方Cube 最小割 + 黑白染色

    1976: [BeiJing2010组队]能量魔方 Cube Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 884  Solved: 307[Submi ...

  7. BZOJ-2756 奇怪的游戏 黑白染色+最大流+当前弧优化+二分判断+分类讨论

    这个题的数据,太卡了,TLE了两晚上,各种调试优化,各种蛋疼. 2756: [SCOI2012]奇怪的游戏 Time Limit: 40 Sec Memory Limit: 128 MB Submit ...

  8. POJ 1466 Girls and Boys 黑白染色 + 二分匹配 (最大独立集) 好题

    有n个人, 其中有男生和女生,接着有n行,分别给出了每一个人暗恋的对象(不止暗恋一个) 现在要从这n个人中找出一个最大集合,满足这个集合中的任意2个人,都没有暗恋这种关系. 输出集合的元素个数. 刚开 ...

  9. acdream 1056 (黑白染色)

    题意:给你一些关系,每个关系是两只马的名字,表示这两个马不能在一个分组里,问你能否将这些马分成两组. 黑白染色,相邻的点染不同颜色.bfs搞即可,水题. /* * this code is made ...

随机推荐

  1. Linux配置国内的Yum源

    因为Linux默认的yum源是国外的源,所以会有卡顿,缓慢的情况.而国内的Yum源相对速度较快,现在也比较成熟,所以给Linux更换国内Yum源是一个很好的选择. 1.  备份(备份之前需要yum i ...

  2. MobaXterm替换cmder

    Windows上命令行工具cmder确实很好用,其扩展功能呢,比系统自带强大几倍.后来在使用MobaXterm,官网https://mobaxterm.mobatek.net/免费版本功能足够强大,支 ...

  3. SP7258 SUBLEX - Lexicographical Substring Search

    \(\color{#0066ff}{ 题目描述 }\) 给定一个字符串,求排名第k小的串 \(\color{#0066ff}{输入格式}\) 第一行给定主串(len<=90000) 第二行给定询 ...

  4. P2264 情书 Trie匹配

    \(\color{#0066ff}{题目描述}\) 为了帮助CYY,我们定义一个量化情书好坏的标准感动值.判断感动值的方法如下: 1.在情书的一句话中若含有给定词汇列表中的特定单词,则感动值加1,但每 ...

  5. VUE使用微信JDK(附踩坑记录)

    VUE使用微信分享SDK(附踩坑记录) 微信分享官方文档 安装JS-SDK npm i -S weixin-jsapi 引入包 ES5 写法 const wx = require('weixin-js ...

  6. [HAOI2006]受欢迎的牛 tarjan缩点 BZOJ1051

    题目背景 本题测试数据已修复. 题目描述 每头奶牛都梦想成为牛棚里的明星.被所有奶牛喜欢的奶牛就是一头明星奶牛.所有奶 牛都是自恋狂,每头奶牛总是喜欢自己的.奶牛之间的“喜欢”是可以传递的——如果A喜 ...

  7. Qt 学习之路 2(15):标准对话框 QMessageBox

    Qt 学习之路 2(15):标准对话框 QMessageBox  豆子  2012年9月18日  Qt 学习之路 2  40条评论 所谓标准对话框,是 Qt 内置的一系列对话框,用于简化开发.事实上, ...

  8. FPGA实战操作(1) -- SDRAM(操作说明)

    SDRAM是做嵌入式系统中,常用是的缓存数据的器件.基本概念如下(注意区分几个主要常见存储器之间的差异): SDRAM(Synchronous Dynamic Random Access Memory ...

  9. element,点击查看,实现tab切换:

    点击查看,实现tab切换: 代码如下: <template> <div> <el-table :data="tableData" style=&quo ...

  10. Django 12 中间件、上下文处理器和admin后台

    Django 12 中间件.上下文处理器和admin后台 一.中间件 #Django中间件 (Middleware) # 一个轻量级.底层的“插件”系统,可以介入Django的请求和响应处理过程,修改 ...