ISP模块之RAW DATA去噪(一)
ISP(Image Signal Processor),图像信号处理器,主要用来对前端图像传感器输出信号处理的单元,主要用于手机,监控摄像头等设备上。
RAW DATA,可以理解为:RAW图像就是CMOS或者CCD图像感应器将捕捉到的光源信号转化为数字信号的原始数据,是无损的,包含了物体原始的颜色信息等。RAW数据格式一般采用的是Bayer排列方式,通过滤波光片,产生彩色滤波阵列(CFA),鉴于人眼对绿色波段的色彩比较敏感,Bayer数据格式中包含了50%的绿色信息,以及各25%的红色和蓝色信息。
Bayer排列格式有以下4种:
1.| R | G | 2.| B | G | 3.| G | R | 4.| G | B |
| G | B | | G | R | | B | G | | R | G |
在ISP处理模块的第一部分,就是需要对CFA DATA进行去噪操作。普通的去噪方式针对Bayer数据格式是不合适的,需要进行变换后才能进行处理。
一、中值滤波CFA(Color Filter Array)Data去噪方法
首先,让我们一起来回顾一下中值滤波的算法原理以及优缺点,然后给出示意的算法效果图。
中值滤波,顾名思义就是将滤波器里面所有像素值进行排序,然后用中间值替代当前像素点值。常用的中值滤波器有3X3,5X5等。
中值滤波的有点在于,实现简单,能够有效的消除椒盐噪声以及其他脉冲型噪声。缺点也是所有去噪算法所共有的,就是平滑模糊了图像的内容,有些角点以及边缘的信息损失。
对CFA DATA进行去噪时,需要将不同的颜色通道分开进行处理,这样是为了防止在平滑过程中将有用的颜色信息丢掉,比如说,由绿色信息包围的蓝色像素值与其相差很大时,此时就会被认为是噪声被处理掉,然而真实情况是,该区域的蓝色信息都是很大的。所以各通道单独处理的话是有利于保护颜色信息的。在我的处理过程中,是将原CFA DATA分成4块-R,G1,G2,B,分块去噪完成后再重新恢复到原来的位置,这样整个过程就完成了。
下面给出参考的中值滤波和主程序的C++(MFC)代码:
主函数:
- void main()
- {
- /*******开始编写中值滤波去噪模块--2015.07.27***********/
- //针对R分量块进行去噪
- pNewDoc->m_RBlock = new unsigned short [m_Height*m_Width/4];
- pNewDoc->m_G1Block = new unsigned short [m_Height*m_Width/4];
- pNewDoc->m_G2Block = new unsigned short [m_Height*m_Width/4];
- pNewDoc->m_BBlock = new unsigned short [m_Height*m_Width/4];
- unsigned short* smoothR = new unsigned short[m_Height*m_Width/4];
- unsigned short* smoothG1 = new unsigned short[m_Height*m_Width/4];
- unsigned short* smoothG2 = new unsigned short[m_Height*m_Width/4];
- unsigned short* smoothB = new unsigned short[m_Height*m_Width/4];
- for (int i = 0; i < m_Height/2 ;i ++ )
- {
- for(int j = 0; j < m_Width/2 ; j ++ )
- {
- pNewDoc->m_RBlock [i*m_Width/2 + j] = m_RawImage[i*m_Width*2 + j*2];
- pNewDoc->m_G1Block[i*m_Width/2 + j] = m_RawImage[i*m_Width*2 + j*2 + 1];
- pNewDoc->m_G2Block[i*m_Width/2 + j] = m_RawImage[i*m_Width*2 + m_Width + j*2];
- pNewDoc->m_BBlock [i*m_Width/2 + j] = m_RawImage[i*m_Width*2 + m_Width + j*2 + 1];
- }
- }
- medianFilter(pNewDoc->m_RBlock,smoothR,m_Width/2,m_Height/2); //针对R分量块进行去噪
- medianFilter(pNewDoc->m_G1Block,smoothG1,m_Width/2,m_Height/2); //针对G1分量块进行去噪
- medianFilter(pNewDoc->m_G2Block,smoothG2,m_Width/2,m_Height/2); //针对G2分量块进行去噪
- medianFilter(pNewDoc->m_BBlock,smoothB,m_Width/2,m_Height/2); //针对B分量块进行去噪
- //反过来构造去噪去噪后的raw data
- for (int i = 0; i < m_Height/2 - 1;i ++ )
- {
- for(int j = 0; j < m_Width/2-1; j ++ )
- {
- pNewDoc->m_ImageNR[i*m_Width*2 + j*2] = smoothR[i*m_Width/2 + j];
- pNewDoc->m_ImageNR[i*m_Width*2 + j*2 + 1] = smoothG1[i*m_Width/2 + j];
- pNewDoc->m_ImageNR[i*m_Width*2 + m_Width + j*2] = smoothG2[i*m_Width/2 + j];
- pNewDoc->m_ImageNR[i*m_Width*2 + m_Width + j*2 + 1] = smoothB[i*m_Width/2 + j];
- }
- }
- /***********中值滤波模块完成--2015.07.27********************/
- //SaveImageData(pNewDoc->m_ImageNR, m_Height ,m_Width,"E:\\m_ImageNR.bmp");
- SetDisplayRawImage( pNewDoc->m_ImageNR, m_Height ,m_Width, m_RawBitType,pNewDoc->m_Image);
- }
void main()
{ /*******开始编写中值滤波去噪模块--2015.07.27***********/
//针对R分量块进行去噪
pNewDoc->m_RBlock = new unsigned short [m_Height*m_Width/4];
pNewDoc->m_G1Block = new unsigned short [m_Height*m_Width/4];
pNewDoc->m_G2Block = new unsigned short [m_Height*m_Width/4];
pNewDoc->m_BBlock = new unsigned short [m_Height*m_Width/4]; unsigned short* smoothR = new unsigned short[m_Height*m_Width/4];
unsigned short* smoothG1 = new unsigned short[m_Height*m_Width/4];
unsigned short* smoothG2 = new unsigned short[m_Height*m_Width/4];
unsigned short* smoothB = new unsigned short[m_Height*m_Width/4];
for (int i = 0; i < m_Height/2 ;i ++ )
{
for(int j = 0; j < m_Width/2 ; j ++ )
{
pNewDoc->m_RBlock [i*m_Width/2 + j] = m_RawImage[i*m_Width*2 + j*2];
pNewDoc->m_G1Block[i*m_Width/2 + j] = m_RawImage[i*m_Width*2 + j*2 + 1];
pNewDoc->m_G2Block[i*m_Width/2 + j] = m_RawImage[i*m_Width*2 + m_Width + j*2];
pNewDoc->m_BBlock [i*m_Width/2 + j] = m_RawImage[i*m_Width*2 + m_Width + j*2 + 1];
}
}
medianFilter(pNewDoc->m_RBlock,smoothR,m_Width/2,m_Height/2); //针对R分量块进行去噪
medianFilter(pNewDoc->m_G1Block,smoothG1,m_Width/2,m_Height/2); //针对G1分量块进行去噪
medianFilter(pNewDoc->m_G2Block,smoothG2,m_Width/2,m_Height/2); //针对G2分量块进行去噪
medianFilter(pNewDoc->m_BBlock,smoothB,m_Width/2,m_Height/2); //针对B分量块进行去噪 //反过来构造去噪去噪后的raw data
for (int i = 0; i < m_Height/2 - 1;i ++ )
{
for(int j = 0; j < m_Width/2-1; j ++ )
{
pNewDoc->m_ImageNR[i*m_Width*2 + j*2] = smoothR[i*m_Width/2 + j];
pNewDoc->m_ImageNR[i*m_Width*2 + j*2 + 1] = smoothG1[i*m_Width/2 + j];
pNewDoc->m_ImageNR[i*m_Width*2 + m_Width + j*2] = smoothG2[i*m_Width/2 + j];
pNewDoc->m_ImageNR[i*m_Width*2 + m_Width + j*2 + 1] = smoothB[i*m_Width/2 + j]; }
}
/***********中值滤波模块完成--2015.07.27********************/
//SaveImageData(pNewDoc->m_ImageNR, m_Height ,m_Width,"E:\\m_ImageNR.bmp");
SetDisplayRawImage( pNewDoc->m_ImageNR, m_Height ,m_Width, m_RawBitType,pNewDoc->m_Image);
}
- <pre name="code" class="html">void medianFilter (unsigned short* corrupted, unsigned short* smooth, int width, int height)
- {
- memcpy ( smooth, corrupted, width*height*sizeof(unsigned short) );
- for (int j=1;j<height-1;j++)
- {
- for (int i=1;i<width-1;i++)
- {
- int k = 0;
- unsigned short window[9];
- for (int jj = j - 1; jj < j + 2; ++jj)
- for (int ii = i - 1; ii < i + 2; ++ii)
- window[k++] = corrupted[jj * width + ii];
- // Order elements (only half of them)
- for (int m = 0; m < 5; ++m)
- {
- int min = m;
- for (int n = m + 1; n < 9; ++n)
- if (window[n] < window[min])
- min = n;
- // Put found minimum element in its place
- unsigned short temp = window[m];
- window[m] = window[min];
- window[min] = temp;
- }
- smooth[ j*width+i ] = window[4];
- }
- }
- } <span style="font-family: Arial, Helvetica, sans-serif;"> </span>
<pre name="code" class="html">void medianFilter (unsigned short* corrupted, unsigned short* smooth, int width, int height)
{ memcpy ( smooth, corrupted, width*height*sizeof(unsigned short) );
for (int j=1;j<height-1;j++)
{
for (int i=1;i<width-1;i++)
{
int k = 0;
unsigned short window[9];
for (int jj = j - 1; jj < j + 2; ++jj)
for (int ii = i - 1; ii < i + 2; ++ii)
window[k++] = corrupted[jj * width + ii];
// Order elements (only half of them)
for (int m = 0; m < 5; ++m)
{
int min = m;
for (int n = m + 1; n < 9; ++n)
if (window[n] < window[min])
min = n;
// Put found minimum element in its place
unsigned short temp = window[m];
window[m] = window[min];
window[min] = temp;
}
smooth[ j*width+i ] = window[4];
}
}
} <span style="font-family: Arial, Helvetica, sans-serif;"> </span>
中值滤波函数是在网上找的代码,由于比较基础,就直接拿过来用了,侵删
去噪前后效果图:
下一篇文章,我将主要给大家展示一下BM3D算法RAW DATA去噪效果,谢谢。
ISP模块之RAW DATA去噪(一)的更多相关文章
- ISP模块之RAW DATA去噪(二)--BM3D算法
在正式开始本篇文章之前,让我们一起回顾一下CFA图像去噪的一些基本思路与方法.接着我会详细地和大家分享自己学习理解的BM3D算法,操作过程,它的优缺点,最后会给出算法效果图供参考. 在ISP模块里,研 ...
- Sensor信号输出YUV、RGB、RAW DATA、JPEG【转】
本文转载自:http://blog.csdn.net/southcamel/article/details/8305873 简单来说,YUV: luma (Y) + chroma (UV) 格式, 一 ...
- Sensor信号输出YUV、RGB、RAW DATA、JPEG 4种方式区别
简单来说,YUV: luma (Y) + chroma (UV) 格式, 一般情况下sensor支持YUV422格式,即数据格式是按Y-U-Y-V次序输出的RGB: 传统的红绿蓝格式,比如RGB565 ...
- 嵌入式开发之davinci--- 8148/8168/8127 中的图像采集格式Sensor信号输出YUV、RGB、RAW DATA、JPEG 4种方式区别
简单来说,YUV: luma (Y) + chroma (UV) 格式, 一般情况下sensor支持YUV422格式,即数据格式是按Y-U-Y-V次序输出的RGB: 传统的红绿蓝格式,比如RGB565 ...
- IPC网络高清摄像机基础知识4(Sensor信号输出YUV、RGB、RAW DATA、JPEG 4种方式区别) 【转】
转自:http://blog.csdn.net/times_poem/article/details/51682785 [-] 一 概念介绍 二 两个疑问 三 RAW和JPEG的区别 1 概念说明 3 ...
- 17.1.1.6 Creating a Data Snapshot Using Raw Data Files 创建一个数据快照使用 Raw Data Files
17.1.1.6 Creating a Data Snapshot Using Raw Data Files 创建一个数据快照使用 Raw Data Files 如果数据库是大的, 复制raw 数据文 ...
- Using the FutureRequestExecutionService Based on classic (blocking) I/O handle a great number of concurrent connections is more important than performance in terms of a raw data throughput
Chapter 7. Advanced topics http://hc.apache.org/httpcomponents-client-ga/tutorial/html/advanced.html ...
- perl模块 Compress::Raw::Lzma 的安装
perl模块 Compress::Raw::Lzma 的安装 用 cpan 安装任意perl模块总是提示 Couldn't untar Compress-Raw-Lzma-2.070.tar: 'Ca ...
- DICOM设备Raw Data与重建
DICOM设备Raw Data与重建 现在的医疗影像设备基本都已DICOM为标准.但现在许多医院的技术人员都以为只要支持DICOM就一切OK,其实不然.DICOM中有Storage.Prin ...
随机推荐
- spring in action 学习十一:property placeholder Xml方式实现避免注入外部属性硬代码化
这里用到了placeholder特有的一个语言或者将表达形式:${},spring in action 描述如下: In spring wiring ,placeholder values are p ...
- 服务器 阿里云服务器Ubuntu挂载数据盘
服务器 阿里云服务器Ubuntu挂载数据盘 转自:http://www.codingyun.com/article/24.html coding云运行在阿里云的Ubuntu 12.04 64位操作系 ...
- 题(NOIP模拟赛Round #10)
题目描述: 有一张的地图,其中的地方是墙,的地方是路.有两种操作: 给出个地点,询问这个地点中活动空间最大的编号.若询问的位置是墙,则活动空间为:否则活动空间为询问地点通过四联通能到达的点的个数.如果 ...
- vifx.y-emu 和 vifx.y 和 tapx.y
xen 启动虚拟机后,domain0 可以看到虚拟网卡设备,但是有几种显示 tapx.y , vifx.y 或者 vifx.y-emu . 在我的实验里,同样的配置,如 vif = ["ty ...
- 27.Remove Element---两指针
题目链接:https://leetcode.com/problems/remove-element/description/ 题目大意:给出一个数组和一个值,从数组中删除与当前值相等的值,并将数组长度 ...
- 原 android重启应用(应用重新启动自身)
private void restartApplication() { final Intent intent = getPackageManager().getLaunchIntentForPack ...
- DOS版PE工具制作
// PE.cpp : 定义控制台应用程序的入口点. //DOS版PE工具制作 #include "stdafx.h" #include <windows.h> #in ...
- python每日一类(1):pathlib
每天学习一个python的类(大多数都是第三方的),聚沙成金. -------------------------------------------------------------------- ...
- PHP使用AJax轮询实现新订单实时提醒
业务逻辑:Ajax每隔10秒钟请求一次接口,该接口会去查询数据库是否有新的订单,如果有则返回新订单的数量,后台收到声音提示,更改后台提醒数量 提醒框可链接到订单列表,后台更改完订单状态后会提醒会消失 ...
- CSS变量使用解析
很早直接就了解到CSS变量相关的内容,奈何之前使用价值不高(很多主流浏览器不兼容) 最近发现主流浏览器都已经支持了这一变化 这一重要的变化,可能会让你发现,原生CSS从此变的异常强大~,下面看一下如何 ...