题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1119

题意:中文题诶~

思路:这题数据比较大直接暴力肯定是不行咯,通过一部分打表我们不难发现这个矩阵就是由两个杨辉三角构成的,那么求f(n, m)就是求组合数c(m+n-2, m-1)%mod,其中n>=m;

我们令m+n-2=n, m-1=m, 即我们要求c(n, m)=n!/((n-m)!*m!)%mod,为了书写方便,我们再令:a=n!/(n-m)!, b=m!;

那么我们现在要求的就是:(a/b)%mod,除法取模并不能直接计算,我们需要将之转化为乘法取摸运算;

接下来我们可以有两种解法:

解法1:(a/b)%mod=(a*b')%mod,其中b'为b%mod的乘法逆元,求乘法逆元我们直接用exgcd就好了;不过这里还有一个问题需要注意:

a, b两个数本身就已经超过long long了,所以我们不能先直接计算出a, b的值再求逆元;那么我们是否可以在计算a, b的过程中给其取摸呢?

即:((a%mod)/(b%mod))%mod=?((a%mod)*b')%mod,  答案是可以的, 因为:b=1(%mod), 那么有 b%mod=1(%mod),  显然,先给b取摸再求逆是可行的。 所以我们最终要求的就是:((a%mod)*b')%mod;

代码:

 #include <bits/stdc++.h>
#define ll long long
using namespace std; const ll mod=1e9+; void exgcd(ll a, ll b, ll&x, ll&y){
if(!b){
y=, x=;
return;
}
exgcd(b, a%b, y, x);
y-=a/b*x;
} int main(void){
ll n, m, a=, b=, x, y;
cin >> n >> m;
if(n<m){
swap(n, m);
}
n=n+m-, m-=;
for(ll i=n,j=; j<m; j++,i--){
a=i*a%mod;
}
for(ll i=; i<=m; i++){
b=b*i%mod;
}
exgcd(b, mod, x, y);
x=(x%mod+mod)%mod;
cout << a*x%mod << endl;
return ;
}

解法2:

我们先引入费马小定理:对于互质的两个数b, mod, 有:b^(mod-1)=1(%mod)-----1式;

本题要求 x=(a/b)%mod, 即: a/b=x(%mod)-----2式;

联立1,2式,有:a/b*b^(mod-1)=x(%mod), 即:a*b^(mod-2)=x(%mod), 所以:x=a*b^(mod-2) % mod, 我们可以用快速幂求解;

关于上式证明:

1式等价于:b^(mod-1)%mod=1; 即: b^(mod-1)=k*mod+1;

2式等价于:(a/b)%mod=x; 即: a/b=k'*mod+x;

所以有:a/b*b^(mod-1)=k*k'*mod^2+k'*mod+x*k*mod+x;

所以:a/b*b^(mod-1)%mod=x;

所以:a/b*b^(mod-1)=x(%mod), 即原式得证;

代码:

 #include <bits/stdc++.h>
#define ll long long
using namespace std; const ll mod=1e9+; ll get_pow(ll x, ll n){
ll ans=;
while(n){
if(n&){
ans=ans*x%mod;
}
x=x*x%mod;
n>>=;
}
return (ans+mod)%mod;
} int main(void){
ll n, m, a=, b=, x, y;
cin >> n >> m;
if(n<m){
swap(n, m);
}
n=n+m-, m-=;
for(ll i=n,j=; j<m; j++,i--){
a=i*a%mod;
}
for(ll i=; i<=m; i++){
b=b*i%mod;
}
cout << a*get_pow(b, mod-)%mod << endl;
return ;
}

51nod1119(除法取模/费马小定理求组合数)的更多相关文章

  1. 题解 P4071 【[SDOI2016]排列计数】 (费马小定理求组合数 + 错排问题)

    luogu题目传送门! luogu博客通道! 这题要用到错排,先理解一下什么是错排: 问题:有一个数集A,里面有n个元素 a[i].求,如果将其打乱,有多少种方法使得所有第原来的i个数a[i]不在原来 ...

  2. 【Gym 100947E】Qwerty78 Trip(组合数取模/费马小定理)

    从(1,1)到(n,m),每次向右或向下走一步,,不能经过(x,y),求走的方案数取模.可以经过(x,y)则相当于m+n步里面选n步必须向下走,方案数为 C((m−1)+(n−1),n−1) 再考虑其 ...

  3. 数学【p2613】 【模板】有理数取余(费马小定理)

    题目描述 给出一个有理数 c=a/b ,求 c mod 19260817的值. 说明 对于所有数据, 0≤a,b≤10^10001 分析: 一看题 这么短 哇简单!况且19260817还是个素数!(美 ...

  4. hdu 3037 费马小定理+逆元除法取模+Lucas定理

    组合数学推推推最后,推得要求C(n+m,m)%p 其中n,m小于10^9,p小于1^5 用Lucas定理求(Lucas定理求nm较大时的组合数) 因为p数据较小可以直接阶乘打表求逆元 求逆元时,由费马 ...

  5. HDU4675【GCD of scequence】【组合数学、费马小定理、取模】

    看题解一开始还有地方不理解,果然是我的组合数学思维比较差 然后理解了之后自己敲了一个果断TLE.... 我以后果然还得多练啊 好巧妙的思路啊 知识1: 对于除法取模还需要用到费马小定理: a ^ (p ...

  6. HDU4704Sum 费马小定理+大数取模

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4704 题目大意: 看似复杂,其实就是求整数n的划分数,4=1+1+2和4=1+2+1是不同的.因而可 ...

  7. 牛客Wannafly挑战赛13-BJxc军训-费马小定理、分式取模、快速幂

    参考:https://blog.csdn.net/qq_40513946/article/details/79839320 传送门:https://www.nowcoder.com/acm/conte ...

  8. hdu 4704 Sum【组合数学/费马小定理/大数取模】By cellur925

    首先,我们珂以抽象出S函数的模型:把n拆成k个正整数,有多少种方案? 答案是C(n-1,k-1). 然后发现我们要求的是一段连续的函数值,仔细思考,并根据组合数的性质,我们珂以发现实际上答案就是在让求 ...

  9. 【费马小定理+快速幂取模】ACM-ICPC 2018 焦作赛区网络预赛 G. Give Candies

    G. Give Candies There are N children in kindergarten. Miss Li bought them N candies. To make the pro ...

随机推荐

  1. 单机版 RedisPoolUtil({基本操作封装工具类})【一】

    <!--集成的RedisJAR--> <!--引入jedis需的jar包--> <dependency> <groupId>redis.clients& ...

  2. zepto不支持animate({scrollTop:"100px"})的解决办法

    在移动web项目的开发中,遇到一个通过点击页面自动到相应的楼层处的需求,最初的想法就是使用html的target属性进行切换,但实际效果十分死板,显得毫无交互性.该前端架构采用zepto这个轻库进行开 ...

  3. codeforces 515C C. Drazil and Factorial(水题,贪心)

    题目链接: C. Drazil and Factorial time limit per test 2 seconds memory limit per test 256 megabytes inpu ...

  4. 机器学习 Generative Learning Algorithm (A)

    引言 前面几讲,我们主要探讨了如何对 p(y|x;θ) (即y 相对于x的条件概率)进行建模的几种学习算法,比如,logistic regression 对 p(y|x;θ) 进行建模的假设函数为 h ...

  5. 通过nginx搭建hls流媒体服务器

    通过录像文件模拟直播源,通过rtmp协议推送到nginx服务器 nginx 配置文件 增加 rtmp { server { listen 1935; application hls { live on ...

  6. OSS阿里云文件上传 demo。

    所需jar包: aliyun-openservices-1.2.3.jar jdom-1.1.jar commons-codec-1.4.jar commons-logging-1.1.1.jar g ...

  7. 【C++ Primer 5th】Chapter 1

    1. 每个C++都包含至少一个函数,其中一个必须为main函数,且 main 函数的返回类型必须为 int. 2. 函数定义包括:返回类型,函数名,形参列表,函数体 3. main 函数返回值用来指示 ...

  8. 非系统数据文件损坏,rman备份恢复

    实验前提:已经做好备份. SQL> col file_name for a50select file_id,file_name from dba_data_files; FILE_ID FILE ...

  9. HDOJ1171(多重背包)

    #include<iostream> #include<cstdio> using namespace std; #define MAX(a,b) (a>b)?a:b + ...

  10. Python:代码单元、代码点介绍

    转于:https://www.cnblogs.com/runwulingsheng/p/5106078.html 博主:你是那天边突然划过的一道闪电 代码点:指编码表(比如Unicode)中某个字符的 ...