luogu

普通版题解:https://www.cnblogs.com/lcxer/p/10876856.html

在普通版里,我们考虑对于\(n\)对情侣,恰好\(k\)对是和谐的方案数是

\[ans[n][k]=\binom{n}{k}A^k_n2^kg(n-k)
\]

然而这样做是\(O(n^2)\)的,瓶颈在于如何快速求出\(g(n-k)\)

之前我们的做法需要用到\(ans\)数组,这样是无法优化的,我们换一个思路来求\(g\)

假如我们已经确定了\(n-1\)对情侣都是乱序的方案数\(g(n-1)\)

那么\(n\)对情侣乱序可以看做选出\(1\)对情侣是和谐的,然后用这\(1\)对情侣中的一个人与其他乱序的人交换,这样得出来的一定是\(n\)对情侣乱序的方案,交换的方案一共是\(2*2(n-1)\),然后考虑将新生成的这对座位插到那\(n-1\)对情侣中的方案数为\(n\)

这一部分的总方案数是

\[4n(n-1)*g(n-1)
\]

然而这样算的并不全,还有一种情况考虑不到:如果有两对情侣都是和谐的,他们之间互换,这种情况之前的方案是考虑不到的

这样的方案数是多少呢?

除去我们新加的这一组,那么我们就选\(1\)组出来,选出来的方案数是\(n-1\)

这两组互换的方案数是\(8\)

然后再将这两组插回去方案数是\(n(n-1)\)

这一部分的总方案数是

\[8n(n-1)(n-1)*g(n-2)
\]

可以发现这已经是所有的方案数了,如果我们多选两组出来,这两组互换一下就是第一部分的方案了,同理其他的情况都可以转化为这两种情况

所以

\[g(n)=4n(n-1)*g(n-1)+8n(n-1)(n-1)*g(n-2)
\]

预处理出来就可以\(O(1)\)询问了

代码:

#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
void read(int &x) {
char ch; bool ok;
for(ok=0,ch=getchar(); !isdigit(ch); ch=getchar()) if(ch=='-') ok=1;
for(x=0; isdigit(ch); x=x*10+ch-'0',ch=getchar()); if(ok) x=-x;
}
#define rg register
const int maxn=5e6+10,N=5e6,mod=998244353;
int k,T,n,g[maxn],fac[maxn],inv[maxn],d[maxn];
int mul(int x,int y){return 1ll*x*y-1ll*x*y/mod*mod;}
int del(int x,int y){return x-y<0?x-y+mod:x-y;}
int add(int x,int y){return x+y>=mod?x+y-mod:x+y;}
int mi(int a,int b){
int ans=1;while(b){if(b&1)ans=mul(ans,a);b>>=1,a=mul(a,a);}
return ans;
}
int C(int n,int m){return mul(fac[n],mul(inv[m],inv[n-m]));}
int A(int n,int m){return mul(fac[n],inv[n-m]);}
int main()
{
read(T);fac[0]=inv[0]=d[0]=1;
for(rg int i=1;i<=N;i++)fac[i]=mul(fac[i-1],i),d[i]=mul(2,d[i-1]);
inv[N]=mi(fac[N],mod-2);
for(rg int i=N-1;i;i--)inv[i]=mul(inv[i+1],i+1);
g[0]=1;
for(rg int i=1;i<=N;i++)g[i]=add(mul(i,mul(4*i-4,g[i-1])),mul(i,mul(8*(i-1),mul(i-1,g[i-2]))));
while(T--)read(n),read(k),printf("%d\n",mul(C(n,k),mul(A(n,k),mul(d[k],g[n-k]))));
}

luoguP4931 情侣?给我烧了!(加强版)的更多相关文章

  1. 洛谷P4931 情侣!给我!烧了! 数论

    正解:数论 解题报告: 传送门 这题,想不到就很痛苦,但是理解了之后还是觉得也没有很难,,,毕竟实现不难QAQ 首先关于前面k对情侣的很简单,就是C(n,k)*C(n,k)*A(k,k)*2k 随便解 ...

  2. 洛谷 P2194 HXY烧情侣【Tarjan缩点】 分析+题解代码

    洛谷 P2194 HXY烧情侣[Tarjan缩点] 分析+题解代码 题目描述: 众所周知,HXY已经加入了FFF团.现在她要开始喜(sang)闻(xin)乐(bing)见(kuang)地烧情侣了.这里 ...

  3. 洛谷P2194 HXY烧情侣

    题目描述 众所周知,\(HXY\)已经加入了\(FFF\)团.现在她要开始喜\((sang)\)闻\((xin)\)乐\((bing)\)见\((kuang)\)地烧情侣了.这里有\(n\)座电影院, ...

  4. HXY烧情侣(洛谷 2194)

    题目描述 众所周知,HXY已经加入了FFF团.现在她要开始喜(sang)闻(xin)乐(bing)见(kuang)地烧情侣了.这里有n座电影院,n对情侣分别在每座电影院里,然后电影院里都有汽油,但是要 ...

  5. HXY烧情侣

    题目描述 众所周知,HXY已经加入了FFF团.现在她要开始喜(sang)闻(xin)乐(bing)见(kuang)地烧情侣了.这里有n座电影院,n对情侣分别在每座电影院里,然后电影院里都有汽油,但是要 ...

  6. P2194 HXY烧情侣【Tarjan】

    前言 当时和\(GYZ\)大佬一起做这个题,他表示这个题对他很不友好(手动滑稽) 题目描述 众所周知,\(HXY\) 已经加入了 \(FFF\) 团.现在她要开始喜(sang)闻(xin)乐(bing ...

  7. 【Luogu4931】情侣?给我烧了! 加强版(组合计数)

    [Luogu4931]情侣?给我烧了! 加强版(组合计数) 题面 洛谷 题解 戳这里 忽然发现我自己推的方法是做这题的,也许后面写的那个才是做原题的QwQ. #include<iostream& ...

  8. luogu4931. 情侣?给我烧了!(加强版)(错位排列)

    题目链接 https://www.luogu.org/problemnew/show/P4931 题解 以下部分是我最开始的想法. 对于每一个 \(k\),满足恰好有 \(k\) 对情侣和睦的方案数为 ...

  9. 洛谷P4931 情侣?给我烧了!(加强版)(组合数学)

    题面 传送门 题解 首先我们算出刚好有\(k\)对情侣的方案数 从\(n\)对情侣中选出\(k\)对,方案数为\({n\choose k}\) 从\(n\)排座位中选出\(k\)排,方案数为\({n\ ...

随机推荐

  1. C++ 0X 新特性实例(比较常用的) (转)

    转自:http://www.cnblogs.com/mrblue/p/3141456.html //array #include <array> void Foo1() { array&l ...

  2. 【二叉查找树】03验证是否为二叉查找树【Validate Binary Search Tree】

    本质上是递归遍历左右后在与根节点做判断,本质上是后序遍历 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ...

  3. perl: warning: Falling back to the standard locale ("C").

    /********************************************************************************** * perl: warning: ...

  4. freeMarker(十六)——FAQ

    学习笔记,选自freeMarker中文文档,译自 Email: ddekany at users.sourceforge.net 1.JSP 和 FreeMarker ? 我们比较 FreeMarke ...

  5. Gym 100801J Journey to the "The World's Start"(二分+单调队列)

    题意: 现在有1,2,3...N这N个站, 给定限定时间Limt,  N-1种票的价格, 分别对应一个最远距离,  叫你选择一种票, 满足可以在规定时间到达N站台,而且价格最低 思路: 如果买距离为L ...

  6. 2017-2018-1 20179203《Linux内核原理与分析》第二周作业

    攥写人:李鹏举 学号:20179203 ( 原创作品转载请注明出处) ( 学习课程:<Linux内核分析>MOOC课程http://mooc.study.163.com/course/US ...

  7. 【Lintcode】363.Trapping Rain Water

    题目: Given n non-negative integers representing an elevation map where the width of each bar is 1, co ...

  8. BZOJ2548:[CTSC2002]灭鼠行动

    我对模拟的理解:https://www.cnblogs.com/AKMer/p/9064018.html 题目传送门:https://www.lydsy.com/JudgeOnline/problem ...

  9. 【jQuery】slice()方法的使用

    [jQuery]slice()方法的使用  slice()方法:从已有的数组中返回选定的元素.  语法:          arrayObj.slice(start, end)             ...

  10. linux 防暴力破解

    #!/bin/bash SCANIP=`grep "Failed" /var/log/secure* | awk '{print $(NF-3)}'| sort |uniq -c ...